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In systems removed from equilibrium, intrinsic microscopic fluctuations become correlated over distances
comparable to the characteristic macroscopic length over which the external constraint is exerted. In order to
investigate this phenomenon, we construct a microscopic model with simple stochastic dynamics using lattice
gas automaton rules that satisfy local detailed balance. Because of the simplicity of the automaton dynamics,
analytical theory can be developed to describe the space and time evolution of the density fluctuations. The
exact equations for the pair correlations are solved explicitly in the hydrodynamic limit. In this limit, we
rigorously derive the results obtained phenomenologically by fluctuating hydrodynamics. In particular, the
spatial algebraic decay of the equal-time fluctuation correlations predicted by this theory is found to be in
excellent agreement with the results of our lattice gas automaton simulations for two different types of
boundary conditions. Long-range correlations of the type described here appear generically in dynamical
systems that exhibit large scale anisotropy and lack detailed balance.@S1063-651X~96!07208-X#

PACS number~s!: 05.20.2y, 05.40.1j, 51.10.1y

I. INTRODUCTION

In a hydrodynamic system under nonequilibrium condi-
tions the fluctuations of the densities of conserved quantities
are correlated over large distances, as confirmed by recent
experiments performed by Law, and co-workers@1–4#. The
presence of long-range correlations in systems removed from
equilibrium had been predicted by kinetic theory@5#, by non-
equilibrium statistical mechanics@6#, and by phenomenologi-
cal theories, such as fluctuating hydrodynamics@7#. These
correlations decay algebraically over distances comparable to
the size of the system. They appear generically in systems
subject to nonequilibrium constraints@6,8–16# and are a con-
sequence of the existence of conserved quantities, the ab-
sence of detailed balance, and the presence of spatial anisot-
ropy. The long-range nature of these correlations is
remarkable in as much as it is manifested in fluids where the
interactions are short ranged, and under conditions for which
the fluid is far from critical points or hydrodynamic instabili-
ties. The fact that equilibrium correlations remain short
ranged away from critical points is a consequence of precise
cancellations of the effects of noise sources@6#. As soon as
this balance, which is characteristic of the equilibrium state,
is lost the correlations may become long ranged, as they
generically do.

Our objective in the present work is to put forth and ana-
lyze a simple microscopic model, which nonetheless pos-
sesses sufficiently complex dynamics to exhibit this type of
long-range correlation. In particular we construct a lattice
gas automaton~LGA! corresponding to a collection of ran-
dom walkers. The ‘‘particles’’ move on a regular array at
discrete time intervals and interact via an exclusion principle,
a constraint that acts as a sort of hard-core potential in the
lattice. Particles also enter collisions whose outcome, while
conserving the number of particles, is otherwise entirely ran-

dom. These collision rules satisfy a local detailed balance
relation, and conserve momentum globally, in a statistical
way, but not locally. At a global scale, detailed balance is
absent because of the imposition of nonequilibrium con-
straints. The automaton dynamics naturally lends itself to a
hierarchical description@17–19#. Microscopically, particles
propagate between adjacent nodes and experience collisions.
From a ‘‘macroscopic’’ point of view, the evolution of the
automaton is given by a diffusion equation. An intermediate
‘‘mesoscopic’’ description accounts for the statistical prop-
erties of the fluctuations, which correspond to deviations
from the average behavior arising from the microdynamics.
In equilibrium, the fluctuation correlations are localized on a
single node. In the presence of a density gradient, which
maintains the automaton away from equilibrium, we can dis-
tinguish two contributions in the correlation function of the
particle number fluctuations: A local equilibrium one, which
is short ranged~in our model, it is strictly localized on one
lattice node!, and a long-range term, which decays algebra-
ically with a characteristic length on the order of the system
size. The simplicity of the dynamics of this automaton at the
microscopic level makes it possible to develop an analytic
description not only for the evolution of the densities of con-
served quantities of the automaton~in this case, solely the
number of particles per node!, but also for their fluctuations.
Thus, we derive exact equations for the evolution of pair
correlations and solve them in the hydrodynamic limit. The
lowest order approximation in a perturbative scheme using
the inverse of the size of the system as an expansion param-
eter leads to the same expressions for pair correlations as the
phenomenological theory of fluctuating hydrodynamics. The
validity of this approximation is tested against the results of
simulations of the dynamics of the automaton. It is seen that
even for very small automata~that is, even rather far from
the thermodynamic limit! fluctuating hydrodynamics pro-
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vides a very accurate description of the statistical properties
of the fluctuations.

The present model system is similar to a cellular automa-
ton proposed by Kawasaki@20# and studied by Spohn@21#,
who also derived the existence of long-range correlations
from the automaton microscopic dynamics. From a mesos-
copic viewpoint, both the cellular automaton studied by
Spohn and the LGA investigated here represent two different
microscopic realizations of a stochastic equation analogous
to that studied by Nicolis and Malek Mansour@22# and Gar-
cia et al. @23# to describe heat transport in a rigid conductor
subject to a temperature gradient. In this case, the conserved
quantity is the energy density~as measured by the local tem-
perature!, and the temperature fluctuations are described by a
Fourier ~heat diffusion! equation, to which a random heat
current with a local equilibrium form is added.

Long-range correlations of the kind described in this pa-
per are also present in LGA with collision rules that violate
detailed balance. These automata attain a homogeneous equi-
librium state that is non-Gibbsian. Initially automata violat-
ing detailed balance were constructed to simulate hydrody-
namics at high Reynolds numbers@24#. It was realized later
on that these models are intrinsically interesting as a para-
digm for driven systems@19,25#, and that they exhibit all the
wealth of behavior characteristic of systems removed from
equilibrium. In particular, they also exhibit algebraically de-
caying correlations, which have been studied in great detail
@12,19,25#.

Our work complements that carried out by these authors
and provides a systematic comparison between the theoreti-
cal description and simulations. One of the main objectives
of this paper is to derive the exact equations for the evolution
of the hydrodynamic variables and their fluctuations and to
establish the connection with fluctuating hydrodynamics.
Once this program is realized, we can describe in detail the
mechanism by which the long-range correlations are built up
from the local microdynamics. We also discuss the validity
of the local-equilibrium hypothesis, a basic assumption~usu-
ally justifieda posteriori! in the theory of fluctuating hydro-
dynamics.

In Sec. II, we review the problem of heat transport in a
rigid conductor using the phenomenological approach of
fluctuating hydrodynamics. The novelty of the present treat-
ment is that the postulated Landau equation includes explic-
itly the heat reservoirs that maintain the temperature gradient
across the conductor. In this scheme it is possible to discuss
the effect of boundary conditions in the stochastic equation
rigorously. Given the long-range nature of the correlations,
boundary effects should be nontrivial. It is argued that the
implemented boundary conditions for the automaton de-
scribed in Sec. III~vanishing of long-range correlations at
the boundaries of the system! correspond to the paradigm of
a system in a quasistationary steady state maintained by con-
tact ~diffusive or thermal! with reservoirs. Section III consti-
tutes the main body of the paper. We construct a two-
dimensional lattice gas automaton whose collision rules
satisfy a local detailed balance relation. Global detailed bal-
ance is broken by imposing nonequilibrium constraints. The
equations for the evolution of the average number of par-
ticles per node and for the corresponding fluctuations are
derived from the microscopic propagation and collision

rules. Simulations of the dynamics of the automaton demon-
strate the accuracy of the theoretical description. Section IV
contains a summary of results and some concluding com-
ments.

II. FLUCTUATING HYDRODYNAMICS

We consider the problem of heat transport in a one-
dimensional rigid conductor. Our starting point is the iso-
lated system analyzed by Procacciaet al. in Appendix B of
Ref. @26# ~see Fig. 1!. We proceed in successive steps: First,
the heat diffusion equation for the system depicted in Fig. 1
is solved. Then, we discuss the conditions under which such
a system supports a quasistationary nonequilibrium steady
state~quasi-NESS! with a linear temperature profile for the
central portion. Finally, we solve the stochastic equation,
which is constructed by adding a random heat flux with local
equilibrium form to the Fourier equation, in the limit in
which the quasi-NESS is established.

Consider the Fourier equation in one dimension,

]

]t
T~x,t !5

]

]x Fk~x!
]

]x
T~x,t !G , ~1!

wherek(x)5k1@u(2x)1u(x2L)#1k2u(x)u(L2x) is the
piecewise constant thermal diffusivity@u(x) is the Heaviside
step function#. The initial condition is

T~x,0!5T1u~2x!1T2u~x!u~L2x!1T3u~x2L !, ~2!

whereT25(T11T3)/25T11bL/2, andb5(T32T1)/L is
the magnitude of the temperature gradient, and a measure of
how far from equilibrium the system is.

Rather than directly solving Eq.~1!, we consider the
equivalent equation for the spatial derivative of the tempera-
ture profile

]

]t

]T~x,t !

]x
5

]2

]x2 Fk~x!
]T~x,t !

]x G , ~3!

with the corresponding initial condition

]T~x,0!

]x
5b

L

2
@d~x!1d~x2L !#. ~4!

The formal solution of Eq.~3! is given by

]T~x,t !

]x
5expH ]2

]x2
k~x!tJ ]T~x,0!

]x
. ~5!

FIG. 1. Quasi-NESS temperature profile.
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The following step is to find the eigenfunctionsPk(x) of the
operator (]2/]x2)k(x):

]2

]x2
k~x!Pk~x!52k2Pk~x!, ~6!

which are given explicitly in Appendix A. Here, we just
quote the result forPk(x) in the limit e5Ak2 /k1→0 for the
case of semi-infinite reservoirs:

Pk~x!'
ak
k2
cos

kx

Ak2

u~x!u~L2x!1O~e!, ~7!

and

ak
2;

k2

L (
n52`

`

dS k2n
pAk2

L D , ~8!

whene→0.
Using the spectral decomposition of the identity

d~x2x0!5E dkk~x0!Pk~x0!Pk~x!, ~9!

we can give an explicit solution for Eq.~3! with the initial
conditions given by Eq.~4!

]T~x,t !

]x
5b

L

2
expH ]2

]x2
k~x!tJ @d~x2L !1d~x!#

'
b

2 F (
n52`

`

e2n2~p2k2 /L
2!tcos

npx

L
@11~21!n#G

3u~x!u~L2x!. ~10!

This solution is valid fort!(1/e2)L2/p2k2 ande→0.
We note that for an intermediate time regime

L2

p2k2
!t!

1

e2
L2

p2k2
,

the derivative of the temperature profile is well approximated
by

]

]x
T~x,t !'bu~x!u~L2x!, ~11!

which corresponds to the long-lived quasi-NESS depicted in
Fig. 1, previously derived in Ref.@26#.

In order to understand what are the proper boundary con-
ditions in a nonequilibrium system when fluctuations are
considered we now proceed to solve the stochastic equation

]

]t
T~x,t !5

]

]x Fk~x!
]

]x
T~x,t !G1

]

]x
g~x,t !, ~12!

obtained by adding to the deterministic heat-diffusion equa-
tion @Eq. ~1!# the gradient of a random heat fluxg(x,t),
which is assumed to be Gaussian white noise with the prop-
erties:

^g~x,t !&50,

^g~x,t !g~x8,t8!&52
kB
Cp

k~x!^T~x,t !&2

3d~x2x8!d~ t2t8!, ~13!

wherekB is the Boltzmann constant,Cp the heat capacity per
unit volume, and̂ T(x,t)& is the temperature profile, which
is a solution of the deterministic equation, Eq.~1!. This Lan-
dau equation@Eq. ~12!# is constructed phenomenologically
by requiring that at homogeneous equilibrium@^T(x,t)&
5Teq# the pair correlations are given correctly. The exten-
sion to a nonequilibrium situation makes use of the hypoth-
esis of local equilibrium. It is assumed that the thermody-
namic variables that characterize the system are well defined
locally. The nonequilibrium steady state is thus viewed as a
state where these thermodynamic variables vary slowly in
space~on a hydrodynamic scale, which is much larger than
the scale at which the underlying microdynamics take place!.
In general, the derivation of Eq.~12!, even in an approximate
way, is rather complicated. In the following section we ana-
lyze a diffusive lattice gas automaton for which we derive
from the actual microscopic dynamics a stochastic Landau
equation.

The equal time pair correlation function of the tempera-
ture fluctuations is defined as

C~x,x8;t !5^dT~x,t !dT~x8,t !&, ~14!

with dT(x,t)5T(x,t)2^T(x,t)&. This correlation function
is the solution of the differential equation

]

]t
C~x,x8;t !5S ]

]x
k~x!

]

]x
1

]

]x8
k~x8!

]

]x8DC~x,x8;t !

1
2kB
Cp

]

]x

]

]x8
k~x!^T~x,t !&2d~x2x8!.

~15!

This equation is obtained by solving formally Eq.~12!, con-
structing the equal time correlation function, and using~13!
to evaluate one of the time integrals; differentiation of the
resulting expression with respect to time yields Eq.~15!.

There are two contributions to the correlations: a local-
equilibrium contribution~denoted LE!, and the remainder
~denoted LR!, which is long ranged:

C~x,x8;t !5CLE~x,x8;t !1CLR~x,x8;t !. ~16!

The local-equilibrium contribution has the form

CLE~x,x8;t !5
kB
Cp

^T~x,t !&2d~x2x8!, ~17!

and the long-ranged term obeys the differential equation

]

]t
CLR~x,x8;t !5S ]

]x
k~x!

]

]x
1

]

]x8
k~x8!

]

]x8DCLR~x,x8;t !

1
2kB
Cp

k~x!S ]^T~x,t !&
]x D 2d~x2x8!. ~18!
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Equation ~18! corresponds to a diffusion equation in two
dimensions with a source term on the linex5x8, which is
proportional to the square of the spatial derivative of the
temperature profile. Assuming that the system is initially in a
local equilibrium state@CLR(x,x8)50#, the formal solution
of Eq. ~18! is

CLR~x,x8;t !5
2kB
Cp

E
0

t

dt expH S ]

]x
k~x!

]

]x

1
]

]x8
k~x8!

]

]x8D ~ t2t!J k~x!

3S ]^T~x,t!&
]x D 2d~x2x8!. ~19!

The explicit solution is obtained by finding the spectral de-
composition of the operator (]/]x)k(x)]/]x

]

]x
k~x!

]

]x
Qk~x!52k2Qk~x!. ~20!

The details of the derivation are given in Appendix A. Here,
we just quote the result for semi-infinite reservoirs in the
limit e5Ak2 /k1→0,

Qk~x!'
bk

Ak2

sin
kx

Ak2

u~x!u~L2x!, ~21!

with

bk
2'

k2

L (
n52`

`

dS k2n
pAk2

L D . ~22!

Hence, in the limite→0 the operator (]/]x)k(x)]/]x has
the same spectral decomposition as the operatork2]

2/]x2

with Dirichlet boundary conditions atx50, L. Assuming
the system is in the quasi-NESS described at the beginning
of this section @i.e., ^T(x,t)&5Ts(x)5T1u(2x)
1(T11bx)u(x)u(L2x)1T3u(x2L)#, the long-range con-
tribution to the pair correlation function is

CLR~x,x8;t !5
2

Lp2b2
kB
Cp

(
n51

`
1

n2
~12e22n2~k2p2/L2!t!

3sinn
px

L
sinn

px8

L
, ~23!

in the limit e5Ak2 /k1→0 and for times
t!(1/e2)L/2p2k2. In the time regime during which the
quasi-NESS is established@L/2p2k2!t!(1/e2)L/2p2k2#
the long-range steady state correlations are of the form

CLRSS~x,x8!5
2

Lp2b2
kB
Cp

(
n51

`
1

n2
sinn

px

L
sinn

px8

L

5
kB
Cp

b2

L
$~L2x8!xu~x2x8!

1~L2x!x8u~x82x!%, ~24!

to lowest order ine. The correlations are proportional to the
square of the temperature gradient and they decay linearly
over a distance comparable to the system size.

It is important to stress at this point that different bound-
ary conditions from the ones described would give rise to
long-range correlations of different form. However, if we
impose the gradient by contact with macroscopic reservoirs,
the appropriate boundary conditions are that the fluctuations
have a local equilibrium form at the edges of the system.

III. DIFFUSIVE LATTICE GAS AUTOMATON

We construct a model system with stochastic micrody-
namics that, at the mesoscopic level, can be approximately
described by the phenomenological theory presented in Sec.
II. The model belongs to the class of lattice gas automata,
where particles move on a regular array at discrete time in-
tervals. Since we are interested in the transport of a scalar
quantity, it is sufficient in two dimensions to consider the
case of a square lattice to obtain a diffusion equation at the
macroscopic level.

The system analyzed is composed of particles moving on
a two-dimensional square latticeL of dimensions
(Lx11)3Ly @27#. There are four channels per lattice node.
Each channel corresponds to the particle velocity pointing
towards one of the four nearest neighbors@ i50 ~right!, 1
~up!, 2 ~left!, 3 ~down!#. Channeli at noderPL is occupied
if there is a particle atr with velocity ci . At time t, the state
of the automaton is thus described by a set of bits,

$ni~r ,t !;rPL, i50,1,2,3%, ~25!

where ni(r ,t) is equal to 1~0! if channel i of node r is
occupied~empty!. There is an exclusion principle, which is
the equivalent in the lattice gas of a hard-core potential pre-
venting two particles from simultaneously occupying the
same channel of a given node.

The microscopic evolution of the automaton takes place
in two stages. There is a propagation step, in which each
particle in the automaton moves to the same channel of a
neighboring node according to its velocity@see Fig. 2~a!#.
For instance, if there is a particle in the channel ‘‘up’’ of
node r , the propagation step will move it to the channel
‘‘up’’ of the node r1 ŷ, where ŷ is a unit vector in theY
direction.

The second stage of the dynamics can be viewed as a
‘‘collision’’ step consisting of a random redistribution of the
particles at each node@see Fig. 2~b!# such that configurations
compatible with the values of the conserved quantities~in
our case, the particle number only! are equally probable out-
comes of the collision step. This choice for the collision rules
greatly simplifies the subsequent analytical derivation of the
equations describing the macro- and mesoscopic evolution of
the automaton. From this set of rules that govern the dynam-
ics of the automaton we can derive a hierarchy of contracted
descriptions containing progressively smaller amounts of in-
formation about the details of the ‘‘microscopic’’ configura-
tion of the automaton. The coarsest description is obtained
by averaging the equation for the evolution of the channel
occupation number over the stochastic dynamics. For the
class of automata investigated this procedure yields an exact
Boltzmann equation, which, in the hydrodynamic limit leads
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to a diffusion equation. Section III A contains a detailed dis-
cussion of this ‘‘macroscopic’’ level of description. A more
refined~mesoscopic! description is obtained by incorporating
the statistical properties of fluctuations. In Sec. III B, we in-
vestigate the behavior of static two point correlations of the
density fluctuations. Following the arguments presented in
Sec. II, nonequilibrium constraints are implemented by ran-
domly initializing the nodes at the automaton edges, which
are in contact with particle reservoirs. This procedure corre-
sponds to assuming a local equilibrium form for the fluctua-
tions at the boundaries. In the bulk, the fluctuations are seen
to exhibit correlations that decay only algebraically over dis-
tances comparable to the size of the system. These long-
range correlations are very sensitive to different implemen-
tations of the nonequilibrium constraints. This point is
illustrated in Sec. III C, where the constraints are imposed by
direct manipulation of the microscopic configuration of the
automaton. Simulations show that the qualitative features of
the long-range correlations are modified, even though the
macroscopic density profile is the same in both cases.

A. Macroscopic dynamics: Diffusion equation

The starting point for the derivation of an equation for the
time evolution of the average occupation of a given node is
the equation that describes the microdynamics of the au-
tomaton

ni~r1ci ,t11!5R„N~r ,t !…, ~26!

where N(r ,t)5( i50
3 ni(r ,t) is the occupation number of

node r at time t, andR(N) is a random function, which

takes the value 0 with probability (12N/4) or the value 1
with probabilityN/4, whereN is an integer between 0 and
4. The Boltzmann equation is obtained by averaging Eq.~26!
over the stochastic dynamics

f i~r ,t11!5
1

4(j50

3

f j~r2ci ,t !, ~27!

with the definition f i(r ,t)5^ni(r ,t)&. The angular brackets
denote the average over the stochastic dynamics. Summing
Eq. ~27! over the indexi , we obtain the equation governing
the evolution of r(r ,t)5^N(r ,t)&5( i50

3 f i(r ,t), the local
density~or average node occupation number!

r~r ,t11!5
1

4(i50

3

r~r2ci ,t !. ~28!

Note that this is anexactBoltzmann equation obtained with-
out appealing to themolecular chaoshypothesis. The sto-
chastic dynamics contains intrinsically the factorization of
the occupation densities through the random redistribution of
the channel occupations@28#. Equation~28! can be rewritten
in the form

r~r ,t11!2r~r ,t !5
1

4(i50

3

~e2ci•“21!r~r ,t !. ~29!

In the continuous time limit and expanding to second order
in the gradients~hydrodynamic limit! Eq. ~29! yields the
diffusion equation

]

]t
r~r ,t !5D¹ r

2r~r ,t !, ~30!

with a diffusion constantD5 1
4. In the derivation of Eq.~30!

we have made use of the symmetries of the lattice, namely,

(
i50

3

ci50, (
i50

3

cici521I, ~31!

where 1I is the unit tensor.
For the sake of comparison of theoretical results with

simulation data, it is convenient to define reduced quantities,
which depend only on one of the spatial directionsX, the
direction along which the gradient is imposed, and on time.
This is achieved by averaging over the remaining spatial
direction Y. Along this direction periodic boundary condi-
tions are imposed by identifying nodes aty50 andy5Ly .
Hence, the reduced density per node is

r~x,t !5
1

Ly
(
y50

Ly21

r~r ,t !. ~32!

In Fourier space, one can easily write the time evolution

dr̂~k,t !5dr̂~k,0!exp$2Dk2t%,

k5
2p

Lx
n, n50,1,2, . . . , ~33!

FIG. 2. ~a! Propagation step in a portion of the automaton. The
motion takes place on a square lattice with spacingsDx5Dy51. A
dot on a link, close to noder , indicates that there is a particle
occupying that node with a unit velocity along the direction indi-
cated by the link;~b! collision step. Thein state withm50, . . . ,4
on a node yields any of the corresponding states with the same
number of particles with probability 1/n$s% , wheren$s% is the mul-
tiplicity of the state~i.e., the number of compatible configurations!.
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where dr̂(k,t) is the Fourier transform of
dr(x,t)5r(x,t)2rs(x), the deviation of the actual density
profile from the asymptotic stationary profilers(x). This sta-
tionary profile is a solution of the differential equation
(]2/]x2)rs(x)50, and, depending on the boundary condi-
tions imposed alongX, it can be a homogeneous equilibrium
profile rs(x)5req, whenr(0)5r(Lx)5req, or a nonequi-
librium steady state, rs(x)5rs(0)1bx; b5@r(Lx)
2r(0)]/Lx , whenr(0)Þr(Lx).

The simulations of the automaton dynamics have been
carried out under both equilibrium and nonequilibrium con-
ditions. Figure 3~a! shows the time evolution of the reduced
density profile in a (25632048) automaton with periodic
boundary conditions in both theX andY directions. Initially
the automaton exhibits a square density profile, in which all
channels of all nodes are occupied forx,26. This initial
nonequilibrium profile evolves to a homogeneous equilib-
rium state characterized by a density per channel
deq50.0976. @Note: The density per channel is just one-
fourth of the density per node:d(x,t)5r(x,t)/4.#

The evolution of the different Fourier components of the
density profiler(k,t) is shown in Fig. 3~b!. The amplitude of
the modek50 is constant, reflecting the global conservation
of the number of particles. The remaining modes, withk
Þ0, have an average exponential decay that agrees with ex-
pression~33!. From this exponential decay we can measure
the diffusion constant, which has an experimental value of

FIG. 3. Simulation data for a 25632048 automaton with peri-
odic boundary conditions in theX andY directions.~a! Evolution of
the reduced density profile along theX direction. Initially the au-
tomaton presents a square density profile with all nodes with
x,26 completely occupied. Asymptotically the automaton evolves
to an equilibrium state characterized by a constant density profile.
~b! Time evolution of the different Fourier components of the re-
duced density profile. In this and subsequent figures time is given in
automaton time step units, and space in units of lattice spacing.

FIG. 4. Time evolution of the reduced density profile along the
X direction in a 2563256 automaton under nonequilibrium condi-
tions. Initially the system has a square profile with all the nodes for
0<x,128 fully occupied and all other nodes 128<x<255 empty.
Asymptotically the system evolves to a steady state characterized
by a linear density profile. Periodic boundary conditions are used
for the Y direction. ForX, the density at the boundaries is kept
constant at the valuesd(x50)51 andd(x5255)50.
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D50.25260.002@29#, in excellent agreement with the value
D5 1

4, predicted by the theory. The deviation arises from the
terms neglected in approximating a finite difference equation
@Eq. ~28!# with a differential equation in both space and time
@Eq. ~30!#.

The results of simulation under nonequilibrium conditions
in a somewhat smaller automaton (2563256) are shown in
Fig. 4. The initial state of the automaton is a square profile
where the nodes on the left half of the lattice are fully occu-
pied. The evolution quickly renders the profile smooth and
eventually leads to a linear density profile, which is the as-
ymptotic stationary state for the implemented boundary con-
ditions @d(x50)51, d(x5Lx)50#. It is clear from Figs.
3~a! and 4 that the fluctuations in the 2563256 automaton
are noticeably larger than in the 25632048 automaton, in
accordance with the idea that the relative size of fluctuations
decreases with increasing system size.

B. Mesoscopic dynamics: Fluctuations

We have derived an exact Boltzmann equation, Eq.~28!,
which describes the dynamics of the single particle distribu-
tion of the automaton. In order to characterize the fluctua-
tions it is necessary to investigate the evolution of quantities
associated with several particles. In particular, for two par-
ticles, we can formulate the equation

ni~r1ci ,t11!nj~r 81cj ,t11!

5@12d~r ,r 8!# (
$s%,$s%

(
$s8%,$s8%

s is j8j$s%→$s%j$s8%→$s8%

3d„$s%,$n~r ,t !%…d„$s8%,$n~r 8,t !%…

1d~r ,r 8! (
$s%,$s%

s is jj$s%→$s%d„$s%,$n~r ,t !%….

~34!

The summations are over possible configurations of a node,
with the notation$s%[$si ; i50,1,2,3%. The random function
j$s%→$s% is 1 or 0 depending on whether the collision pro-
duces the configuration$s% from the initial configuration
$s% or not. Upon averaging over the stochastic dynamics this
quantity becomesA$s%→$s% , a matrix that has a block-
diagonal form, provided that the configurations$s%,$s% are
grouped into equivalence classes according to the value of
the conserved quantities. For the automaton considered here,

A$s%→$s%5
1

n$s%
dS (

k
sk ,(

k
skD , ~35!

wheren$s% is the number of elements in the equivalence class
to which the configuration$s% belongs. Its value for the
present case~see Appendix B! is

n$s%5S 4

(
k50

3

sk
D . ~36!

Appendix B also contains a derivation of the result

(
$s%

s iA$s%→$s%5
1

4(k50

3

sk , ~37!

which is needed, together with the Boolean nature of the
variables (s i

25s i) to evaluate the average of Eq.~34! over
the stochastic dynamics:

^ni~r1ci ,t11!nj~r 81cj ,t11!&5@12d~r ,r 8!#
1

16(k,l ^nk~r ,t !nl~r 8,t !&1d~r ,r 8!F14 d i j(
k

^nk~r ,t !&

1
1

12
~12d i j !(

k
K nk~r ,t !S (

l
nl~r ,t !21D L G

5
1

16
^N~r ,t !N~r 8,t !&1d~r ,r 8!

1

48
~124d i j !@^N

2~r ,t !&24^N~r ,t !&#. ~38!

Summing over the indicesi , j and making use of the equation forr(r ,t)5^N(r ,t)& @Eq. ~28!#, we can derive the equation for
the correlation function of the density fluctuationsC(r ,r 8;t)5^N(r ,t)N(r 8,t)&2^N(r ,t)&^N(r 8,t)&,

C~r ,r 8;t11!2C~r ,r 8,t !5
1

16(i j ~e2ci•“r e2cj •“r821!C~r ,r 8;t !

1
1

48(i j e2ci•“r e2cj •“r8~124d i j !@^N
2~r ,t !&24r~r ,t !#d~r ,r 8!. ~39!

This exact equation can be approximated in the hydrodynamic limit~small gradients! and in the continuous time limit by
the following equation
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]

]t
C~r ,r 8;t !5D~¹ r

21¹ r8
2

!C~r ,r 8;t !

2“r–“r8F2D3 @^N2~r ,t !&24r~r ,t !#d~r ,r 8!G .
~40!

At this point, it is interesting to compare expression~40!
with the theory of fluctuating hydrodynamics. Following the
prescription given by Landau and Lifshitz@30#, we assume
that dN(r ,t)5N(r ,t)2r(r ,t) is a random variable obeying
a stochastic equation, which is constructed by adding a noise
term to the macroscopic diffusion equation that governs the
evolution ofr(r ,t)5^N(r ,t)&:

]

]t
dN~r ,t !5D¹2dN~r ,t !1“•g~r ,t !. ~41!

The termg(r ,t) is a random particle flux assumed to be
Gaussian white noise with the properties

^g~r ,t !&50,

^g~r ,t !g~r 8,t8!&51IFFH~r ,t)d~r ,r 8!d~ t2t8!, ~42!

where FFH(r ,t) is the amplitude of the noise. Given this
specification for the noise term, we can derive the equation
for the pair correlation function for the density fluctuations,
C(r ,r 8;t)5^dN(r ,t)dN(r 8,t)&,

]

]t
C~r ,r 8;t !5D~¹ r

21¹ r8
2

!C~r ,r 8;t !

1“r–“r8@FFH~r ,t !d~r ,r 8!#. ~43!

Knowing that, at equilibrium@i.e., for a constant density pro-
file r(r ,t)5r#, the correlation function for the density fluc-
tuations is exactly@see Eq.~3.26! of Ref. @31##

Ceq~r ,r 8!5
r

4
~42r!d~r ,r 8!, ~44!

we conclude that the strength of the noise term must be

FFH
eq 5

D

2
r~42r! ~45!

in order that Eq.~43! give the correct answer for the equi-
librium correlations.

Away from equilibrium, we make use of the hypothesis
that the noise term, which reflects the effect of dynamics at
the microscopic scale, has a local equilibrium form

FFH~r ,t !5
D

2
r~r ,t !@42r~r ,t !#. ~46!

With this hypothesis Eq.~43! becomes

]

]t
C~r ,r 8;t !5D~¹ r

21¹ r8
2

!C~r ,r 8;t !1“r–“r8

3FD2 r~r ,t !@42r~r ,t !#d~r ,r 8!G . ~47!

We observe that this equation, which has been constructed in
a phenomenological fashion, can be obtained from Eq.~40!,
which was derived directly from the microscopic dynamics,
if we assume that the on-site correlations have a local equi-
librium form:

^N2~r ,t !&'^N2~r ,t !&LE5 3
4r2~r ,t !1r~r ,t !. ~48!

This is a good approximation in the thermodynamic limit,
since the term neglected is of the order of one over the size
of the system.

In order to study in detail the nature of these correlations,
we focus on a (Lx11)3Ly automaton in a nonequilibrium
steady state characterized by an average stationary density
profile, which is linear in theX direction

rs~r !5rs~x50!1bx, ~49!

whereb5(1/Lx)@r(x5Lx)2r(x50)#.
In the pair correlation function for the density fluctuations

we can distinguish two contributions: a local-equilibrium
term and a part containing the long-range correlations

C~r ,r 8;t !5CLESS~r ,r 8!1CLR~r ,r 8;t !, ~50!

where

CLESS~r ,r 8!5 1
4rs~r !@42rs~r !#d~r ,r 8!. ~51!

Substituting expressions~50! and~51! in Eq. ~39!, we obtain

CLR~r ,r 8;t11!2CLR~r ,r 8;t !5
1

16(i j ~e2ci•“r e2cj •“r821!CLR~r ,r 8;t !1
1

48(i j e2ci•“r e2cj •“r8~124d i j !

3@CLR~r ,r ;t !d~r ,r 8!#1
1

4(i ~e2ci•~“r1“r8!21!F14 rs~r !@42rs~r !#Gd~r ,r 8!. ~52!

Using Eqs.~31! and ~49! to simplify the last term, we have

CLR~r ,r 8;t11!2CLR~r ,r 8;t !5
1

16(i j ~e2ci•“r e2cj •“r821!CLR~r ,r 8;t !1
1

48(i j e2ci•“r e2cj •“r8~124d i j !

3@CLR~r ,r ;t !d~r ,r 8!#2
1

8
b2d~r ,r 8!. ~53!
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If we neglect the second term on the right-hand side of Eq.
~53!, which is equivalent to assuming that the on-site corre-
lations have a local equilibrium form@i.e., ^N2(r ,t)&
'^N2(r ,t)&LE#, we find that this equation describes a ran-
dom walk in a four-dimensional cubic lattice (r ,r 8) with

sources of constant strength along the surfacer5r 8. In order
to visualize the mechanism by which the long-range correla-
tions are built up, consider the evolution of a system initially
at local equilibrium@CLR(r ,r 8;t50)50#, with a stationary
density profile given by Eq.~49!. On average, channeli of
noder has an occupationf i(r )5

1
4rs(r ), for i50,1,2,3. After

the propagation step, the average occupation per channel at
noder is

f 0~r !5 1
4 @rs~r !2bDx#,

f 1~r !5 1
4rs~r !,

f 2~r !5 1
4 @rs~r !1bDx#,

f 3~r !5 1
4rs~r !,

whereDx is the lattice spacing in theX direction, which
we have taken to be equal to 1 throughout the paper. The
pair correlations are local and equal to^dni(r )dnj (r )&
5d i j f i(r )@12 f i(r )#, which yields

C~r ,r !5 1
4rs~r !@42rs~r !#2 1

8b2. ~54!

After the collision step the particles are redistributed at ran-
dom, which implies that, on average, the channel occupation
number is f i(r )5

1
4rs(r ), for i50,1,2,3, as initially. Since

the number of particles at each node is conserved in the
collision step, the total correlations@Eq. ~54!# do not change,
except that the nonequilibrium contribution is now com-
pletely off diagonal in the channels:

Ci j ~r ,r !5^dni~r !dnj~r !&

5d i j f i~r !@12 f i~r !#2~12d i j !
1
96b2. ~55!

In Ci j (r ,r ) the diagonal terms (i5 j ) have a local equilib-
rium form and they remain local upon propagation. The off-
diagonal terms (iÞ j ) give rise to the source term propor-
tional to2b2/8 that appears in Eq.~53!. Upon propagation,
these off-diagonal correlations become nonlocal and perform
a random walk~diffusion in the continuous limit! in the four-
dimensional lattice (r ,r 8). This accounts for the first term
that appears on the right-hand side~rhs! of Eq. ~53!. The
only contribution unaccounted for is the second term in the
rhs of Eq.~53!, which corresponds to long-range correlations
created from pre-existing long-range correlations. It is small
in the thermodynamic limit, and we shall neglect it hence-
forth.

Finally, after neglecting the on-site contributions from the
long-range term, and in the hydrodynamic and continuous
time limits, we approximate Eq.~53! by

]

]t
CLR~r ,r 8;t !5D~¹ r

21¹ r8
2

!CLR~r ,r 8;t !2 1
8b2d~r ,r 8!.

~56!

In order to compare with the simulations, we define reduced
quantities by averaging over theY direction ~orthogonal to
the direction of the gradient!

FIG. 5. Equilibrium correlations of the density fluctuations,
Ceq(x,x855), in an 11311 automaton.~a! Periodic boundary con-
ditions in bothX andY directions; the average density isd50.5.
~b! Periodic boundary conditions in theY direction; for theX di-
rection, the average density of the boundary nodes is kept fixed at
the valued(x50)5d(x510)50.5.
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C~x,x8;t !5 (
y50

Ly21

(
y850

Ly21

C~r ,r 8;t !. ~57!

We impose periodic boundary conditions in theY direction
and Dirichlet boundary conditions in theX direction. As dis-
cussed in the previous section, the Dirichlet boundary condi-

tions ~i.e., that the correlations at the edges of the system
have a local equilibrium form!, correspond to the system
being in contact with two reservoirs of different chemical
potential. This corresponds to the paradigm of the automaton
implemented in our simulations, where the configuration of
all the nodes atx50, Lx is reinitialized randomly at every

FIG. 6. Simulation data and theoretical results for an 11311 automaton in a nonequilibrium steady state withd(x50)51,
d(x510)50. ~a! Correlations of the density fluctuations,CNESS(x,x855). ~b! Long-range contributionCLRSS(x,x855). ~c! Long-range
contributionCLRSS(x,x853). ~d! Long-range contributionCLRSS(y,y855).
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time step, with the constraint that the average densities at
x50, Lx be constant~although, in general, different from
each other!. The asymptotic solution of~56! with these
boundary conditions is@22,23#

CNESS~x,x8!5CLESS~x,x8!1CLRSS~x,x8!, ~58!

with

CLESS~x,x8!5 1
4Lyrs~x!@42rs~x!#d~x,x8!, ~59!

and

CLRSS~x,x8!52
b2

4

Ly
Lx

$x8~Lx2x!u~x2x8!

1x~Lx2x8!u~x82x!%. ~60!

Simulations have been carried out in 11311 automata
with both equilibrium and nonequilibrium constraints. Figure
5~a! shows the density fluctuation correlations in a closed
system with periodic boundary conditions in both theX and
Y directions. It can be seen that together with the local-
equilibrium term, there is a long-range contribution, which is
constant and negative, as predicted by Bussemaker, Ernst,
and Dufty @19#. This long-range contribution is well known
in classical statistical mechanics@see, for instance, Eq.~13.9!
of Ref. @32#! and appears solely as a consequence of global
conservation of particles~see Appendix C!.

More physically relevant simulations are carried out in
automata with periodic boundary conditions in theY direc-
tion and in contact with particle reservoirs at the edges per-
pendicular to theX direction. Figure 5~b! shows the density
fluctuation correlations between the middle node and the
other nodesCeq(x,x855) in an equilibrium system with a
homogeneous density profile. The average density per chan-
nel in this automaton isd50.5. Note that the correlations are
local and exactly equal~up to sampling errors! to the value
Ly511 @see Eq.~59!#. The average was performed over
108 time steps.

Figure 6~a! contains a plot of the correlations between
fluctuations at nodesx55 and nodes with arbitraryx,
CNESS(x,x855), for a system that is maintained in a non-
equilibrium steady state by fixing the boundary densities at
the valuesd(x50)51 andd(x510)50. Figure 6~b! is a
plot of the long-range componentCLRSS(x,x855) of the
nonequilibrium correlations depicted in Fig. 6~a!. The full
line is simulation data, obtained by averaging over 108 time
steps. The dotted line corresponds to the approximation
given by fluctuating hydrodynamics, Eqs.~58!–~60!. A simi-
lar comparison is shown in Fig. 6~c! for CLRSS(x,x853).

Note that the equation forCLR(r ,r 8;t) @Eq. ~56!# contains
information about the magnitude of the gradient (b), but not
about its direction. This means that correlations are also long
ranged along the directionperpendicularto the concentration
gradient. This is illustrated in Fig. 6~d!, where we have plot-
ted C(y,y855)5(x,x8C

LRSS(x,y,x8,5) for the same au-
tomaton. The correlations are different from those depicted
in Fig. 6~b! owing to the asymmetry introduced by the type

of boundary conditions~fixed in theX direction, periodic in
theY direction!. The theoretical curve is obtained by solving
Eq. ~56! by Fourier analysis.

C. Effect of boundary conditions

Unless we have access to its microscopic configuration,
the only way to impose a nonequilibrium density profile in a
diffusive system is to establish contact with two particle res-
ervoirs of different chemical potential. Provided that the dif-
fusion coefficient is independent of density, a system under
these constraints will display, on average, a linear density
profile. Furthermore, as discussed in Sec. II, the density fluc-
tuations exhibit both local-equilibrium and long-range corre-
lations in the bulk, but only local-equilibrium correlations at
the boundaries.

One of the advantages of investigating the type of prob-
lem under consideration with an automaton is that we are
able to manipulate the configuration in each node at will. For
instance, the system can be forced by injecting and with-
drawing particles in such a way that it asymptotically dis-
plays an arbitrary stationary density profile. Obviously, this
manipulation involves an important modification in the na-
ture of the fluctuations, which are extremely sensitive to how
the microscopic configuration of the automaton is altered,
and the loss of detailed balance in those nodes where the
external perturbation is acting.

In order to illustrate the effect of different boundary con-
ditions on the long-range fluctuations, we have carried out
simulations in a diffusive LGA, where for 0<x<Lx a sta-
tionary reduced density profile of the form

rs~x!5r1u~a2x!1~r12bx!u~x2a!u~b2x!

1r3u~x2b! ~61!

is established by creating particles atx5a, and annihilating
particles atx5b at appropriate constant rates~see Fig. 7!.
This procedure is very different from the previous imple-
mentation, in which at every step all the nodes with
x5a,b are reinitialized at random, in such a way as to main-
tain the respective average densities constant. As far as fluc-
tuations are concerned, this implied that the correlations be-
tween fluctuations in nodes at the boundaries and those in
bulk nodes are systematically destroyed at every time step.
As a consequence, long-range correlations in such a system
are confined in the regiona,x,b while the rest of the
system (0<x<a, b<x<Lx) exhibits only local-equilibrium
fluctuations.

For the implementation with the creation-annihilation pro-
cedure, in the continuous-time and hydrodynamic limit, the
Landau equation governing the automaton evolution is

]

]t
r~x,t !5D

]2

]x2
r~x,t !1

]

]x
g~x,t !1Fext~x,t !, ~62!

where the diffusion constant isD5 1
4, the quantityg(x,t) is

the familiar random particle flux with local equilibrium form,
and Fext(x,t) is an external field representing the effect of
injecting and withdrawing particles atx5a,b. The average
of this external field is stationary and equal to
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F̄ext~x!5^Fext~x,t !&

52D
]2

]x2
rs~x!1bD@d~x2a!2d~x2b!#.

~63!

The external field has a nonvanishing fluctuating part, which
can be assumed to be Gaussian white noise provided that we
are only interested in calculating pair correlations. Since we
are manipulating the system only locally atx5a,b, the fluc-
tuations of the external field will also be local,

^@Fext~x,t !2F̄ext~x!#@Fext~x8,t8!2F̄ext~x8!#&

5Dd~ t2t8!@Dad~x2a!d~x82a!

1Dbd~x2b!d~x82b!#, ~64!

whereDa (Db) measures the intensity of particle creation
~annihilation!. The system is in contact with reservoirs at
x50 andx5Lx of appropriate chemical potential so that the
average density is constant and equal tor1 andr3, respec-
tively.

Again, the correlation function of the steady state density
fluctuations can be separated into two terms,

CNESS~x,x8!5CLESS~x,x8!1CLRSS~x,x8!, ~65!

with a local equilibrium contribution,

CLESS~x,x8!5 1
4Lyrs~x!@42rs~x!#d~x,x8!, ~66!

and a long-range contribution, which can be expressed as a
double Fourier series

CLRSS~x,x8!5 (
n51

`

(
m51

`

Cnmsin
np

Lx
x sin

mp

Lx
x8, ~67!

with

FIG. 8. ~a! Steady-state correlations,CNESS(x,x8515), in a
31331 automaton in the nonequilibrium state depicted in Fig. 7.~b!
Long-range contribution,CLRSS(x,x8515).

FIG. 7. Averaged density profile in a 31331 automaton, ob-
tained by creating particles ata510, and annihilating them at
b520 at appropriate rates. The average densities at the boundaries
are kept atd15d(x50)50.75 andd35d(x530)50.25.
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Cnm5
1

n21m2 S 2p D 2F2b2
Ly
2 Ea

b

dzsin
np

Lx
zsin

mp

Lx
z

1ca sin
np

Lx
a sin

mp

Lx
a1cb sin

np

Lx
b sin

mp

Lx
bG ,

where

ca5Da2
1
4b~422r1!,

cb5Da1
1
4b~422r3!.

Simulations have been carried in a 31331 automaton
with the parametersa510, b520, d150.75, andd350.25.
For these values,ca5cb5c, for symmetry reasons. Figure 7
shows the density profile averaged over 104 time steps,
which is indeed of the form given by Eq.~61!.

In Fig. 8~a!, the density fluctuation correlations
CNESS(x,x8) are plotted forx8515. The continuous line in
Fig. 8~b! connects the simulation data for the long-range cor-
relations at steady state between an arbitrary point and the
middle nodeCLRSS(x,x8515), obtained after averaging over
53107 time steps. The dashed line represents the approxi-
mate solution, given by expression~67! ~the Fourier series
has been truncated aftern,m51000), for a valuec59.1,
which has been chosen so as to obtain the best fit to the
simulation data. The agreement between simulations and the
approximation given by fluctuating hydrodynamics is very
good. There are several features that call for comments. First,
the correlations extend beyond the central part of the system
a,x,b, where there is a concentration gradient; they have
a nonzero value for all 0,x,Lx . Second, the form of the
correlations is qualitatively different from those obtained in a
system with a linear density profile fora<x<b, maintained
by contact with particle reservoirs at the extremes. In par-
ticular they arepositive, nonmonotonic as a function of dis-
tance and furthermore they are nonlinear. Nonetheless, the
fluctuations in the ‘‘bulk’’ ~i.e., around the central node! are
qualitatively similar in both situations@compare Figs. 6~a!
and 8~a! and Figs. 6~b! and 8~b!#.

IV. SUMMARY

We have constructed a lattice gas automaton with a set of
fully stochastic collision rules, giving rise to diffusive behav-
ior in the hydrodynamic and continuous time limit. This
model system exhibits spontaneous fluctuations similar to
those found in actual fluids@18#. The statistical properties of
these fluctuations are the main objective of the present study.
In the simulations the automaton is kept at equilibrium or
away from equilibrium by placing it in contact with particle
reservoirs of equal or different chemical potentials, respec-
tively. From a computational point of view, these conditions
are implemented by randomly initializing the nodes at the
boundaries of the system at every time step. Under equilib-
rium constraints, the correlations of the density fluctuations
are localized on each node, a result that is consistent with the
observation that in fluids away from critical points or hydro-
dynamic instabilities, pair correlations decay on a micro-
scopic length scale. The local nature of equilibrium correla-

tions is the result of a balance between noise sources, which
is lost as soon as the system is removed from equilibrium. It
is thus seen that in a nonequilibrium steady state the density
fluctuations are correlated not only locally in an equilibrium-
like manner, but also over large distances. This implies that
the nonequilibrium distribution function is not factorized, in
contrast to the equilibrium case. Both the local-equilibrium
and the long-range contributions to correlations have been
measured in computer simulations. The results of simula-
tions have been compared to theoretical expressions derived
from the stochastic microdynamics of the automaton. As a
first approximation to these exact expressions, one can derive
expressions obtained by means of the phenomenological
theory of fluctuating hydrodynamics, which are in excellent
agreement with the results of simulations even in fairly small
automata.

For the automata analyzed in this paper where the micro-
scopic evolution preserves the particle number and where a
preferred spatial direction is established by the imposition of
a density gradient, global detailed balance is absent as a con-
sequence the imposition of nonequilibrium constraints at the
boundaries of the system. Long-range correlations of the
type described here appear generically in dynamical systems
with conserved quantities, having large-scale spatial anisot-
ropy and lacking detailed balance.
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APPENDIX A

The object of this appendix is to obtain the spectral de-
composition of the operators (]2/]x2)k(x), and
(]/]x)k(x)]/]x, where the thermal diffusivity isk(x)
5k1u(2x)1k2u(x)u(L2x)1k1u(x2L), with the condi-
tion that the eigenfunctions are a superposition of plane
waves in the limit uxu→`. This corresponds to the setup
depicted in Fig. 1 with semi-infinite reservoirs.

Consider the eigenvalue equation

]2

]x2
k~x!Pk~x!52k2Pk~x!. ~A1!

We require thatk(x)Pk(x) and its first derivative be con-
tinuous atx50, L and that thePk(x) form an orthonormal
set @in the Dirac sense, that is, we require that
*2`

` dxk(x)Pk(x)Pk8
(x)5d(k2k8)#. The eigenfunctions

can be written as
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Pk~x!5
1

k1
FakcoskxAk1

1bkAk1sin
kx

Ak1
Gu~2x!

1
1

k2
FckcoskxAk2

1dkAk2sin
kx

Ak2
Gu~x!u~L2x!

1
1

k1
Fekcosk~x2L !

Ak1

1 f kAk1sin
k~x2L !

Ak1
Gu~x2L !.

~A2!

First, we implement the continuity conditions atx50, and
obtain the equalities

ck5ak ,
~A3!

bk5dk .

The continuity conditions atx5L yield the result

S ekf kD 5S cos
kL

Ak2

Ak2sin
kL

Ak2

2
1

Ak2

sin
kL

Ak2

cos
kL

Ak2

D S ckdkD . ~A4!

Finally, the orthonormalization condition is

E
2`

`

dxk~x!Pk~x!Pk8~x!5
p

2Ak1

$~ak
21k1bk

21ek
21k1f k

2!d~k2k8!

1~aka2k2k1bkb2k1eke2k2k1f kf2k!d~k1k8!%

5d~k2k8!. ~A5!

Combining Eqs.~A3!–~A5!, we obtain

bk5a ukuak , ~A6!

with

a uku
2 5

1

k1

11cos2~kL/Ak2!1~k1 /k2!sin
2~kL/Ak2!

11cos2~kL/Ak2!1~k2 /k1!sin
2~kL/Ak2!

.

~A7!

We are mainly interested in the limite5Ak2 /k1→0; then

a uku
2 ;

1

k1
1

1

k2

sin2kL/Ak2

11cos2~kL/Ak2!
, ~A8!

whene→0. Note that ifkL/Ak2Þnp for anynPZ then all
coefficientsak , . . . ,f k are at most of ordere. On the other
hand, if kL/Ak25np1h, with h!1 for somenPZ, then
all coefficients are at most of ordere exceptak , which has a
singular behavior,

ak
25

Ak2

p

e

~2e21h2!2~1/A2!h~2e21h!1/2
. ~A9!

For e→0 Eq. ~A9! is an asymmetric representation of ad
function. That is,

ak
2;Ak2d~h!, ~A10!

whene→0.
Thus, to lowest order ine, the eigenfunctions of the op-

erator (]2/]x2)k(x) are

Pk~x!5
ak
k2
cos

kx

Ak2

u~x!u~L2x!, ~A11!

with

ak
2'Ak2 (

n52`

`

dS kL

Ak2

2np D 5
k2

L (
n52`

`

dS k2n
pAk2

L D .
~A12!

For the second operator, the eigenvalue equation is

]

]x
k~x!

]

]x
Qk~x!52k2Qk~x!, ~A13!

with the conditions thatQk(x) andk(x)]/]xQk(x) are con-
tinuous atx50, L. We further require that the set of eigen-
functions be orthonormal in the Dirac sense
*2`

` dxQk(x)Qk8(x)5d(k2k8). The solution of Eq.~A13!
can be written as

Qk~x!5FakcoskxAk1

1
bk

Ak1

sin
kx

Ak1
Gu~2x!

1FckcoskxAk2

1
dk

Ak2

sin
kx

Ak2
Gu~x!u~L2x!

1Fekcosk~x2L !

Ak1

1
f k

Ak1

sin
k~x2L !

Ak1
Gu~x2L !.

~A14!

Using the continuity and orthonormalization conditions, we
have
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ck5ak,

bk5dk ,

S ekf kD 5S cos
kL

Ak2

1

Ak2

sin
kL

Ak2

2Ak2sin
kL

Ak2

cos
kL

Ak2

D S ckdkD ,
ak5a ukubk,

a uku
2 5

1

k1

11cos2~kL/Ak21~k1 /k2!sin
2~kL/Ak2!

11cos2~kL/Ak2!1~k2 /k1!sin
2~kL/Ak2!

.

~A15!

In the limit e5Ak2 /k1→0 we have

Qk~x!'
bk
k2
sin

kx

Ak2

u~x!u~L2x!, ~A16!

with

bk
2'

k2

L (
n52`

`

dS k2n
pAk2

L D , ~A17!

whene→0.

APPENDIX B

Here we compute the values ofn$s% and of
($s%s i^A&$s%→$s% for the automaton described in Sec. III.

We first evaluate the number of elements in the equiva-
lence class of configurations with(ksk particles:

n$s%5(
$s%

dS (
k
sk ,(

k
skD 5(

$s%

1

2pE0
2p

dxexpH i(
k50

3

~sk2sk!xJ 5
1

2pE0
2p

dx(
$s%

)
k50

3

exp$ i ~sk2sk!x%

5
1

2pE0
2p

dx)
k50

3 Feiskx (
sk50

1

e2 iskxG5
1

2pE0
2p

dxexpH i(
k
skxJ ~11e2 ix!4

5(
l50

4 S 4l D 1

2pE0
2p

dxexpH i S (
k
sk2 l D xJ 5(

l50

4 S 4l D dS l ,(
k
skD 5S 4

(
k
skD .

Thus, the number of configurations with a given number of particles is

n$s%5S 4

(
k
skD , ~B1!

i.e., the number of different ways of placing(ksk particles in the four different channels. We now evaluate the numerator of
the second expression, which is the number of configurations with channeli occupied

(
$s%

s idS (
k
sk ,(

k
skD 5

1

2pE0
2p

dx expH i(
k
skxJ ~11e2 ix!3)

kÞ i
(

s i50

1

s ie
2 is i x

5
1

2pE0
2p

dxexpH i(
k
skxJ ~11e2 ix!3e2 ix5S 3

(
k
sk21D . ~B2!

This result could have been obtained straightforwardly by
arguing that the quantity calculated is equal to the number of
different ways of placing the remaining(ksk21 particles in
the three available channels, given that channeli is already
occupied by one particle.

Combining~B1! and ~B2!, we have

(
$s%

s iA$s%→$s%5
($s%s id~(ksk ,(ksk!

($s%d~(ksk ,(ksk!
5

(ksk
4

, ~B3!

which just states the fact that after a collision, the average
occupation of a channel is proportional to the number of
particles participating in the collision.

APPENDIX C

In a closed system at equilibrium long-range correlations
appear rather trivially as a consequence of global conserva-
tion laws. For the automata under consideration, it has been
verified @see Fig. 5~b!# that equilibrium correlations of the
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density fluctuations exhibit a long-range contribution, which
is constant, and whose integrated value is equal in magnitude
and opposite in sign to the local equilibrium term, so that the
total number of particles is conserved.

Consider an automaton whose latticeL containsV nodes.
There areb equivalent channels per node. The particle den-
sity ~number of particles per node! is r. We consider peri-
odic boundary conditions, so that the system is closed~i.e.,
the total number of particlesN5rV is conserved!. Let $n
(•)%5$ni(r );rPL,i50,1, . . . ,(b21)% denote the automa-

ton configuration. The equilibrium probability of having the
configuration$n(•)% is

P@$n~• !%#5)
r

)
i
p~ni~r !!dS (

r
(
i
ni~r !2ND ,

~C1!

with p„ni(r )51…5u, p(ni(r )50)512u. The parameteru
is determined by normalization:

(
$n~• !%

P@$n~• !%#5 (
$n~• !%

)
r

)
i
p~ni~r !!

1

2pE0
2p

dxexpH ixS (
r

(
i
ni~r ! D 2NJ

5
1

2pE0
2p

dxe2 ixN)
r

)
i

(
ni ~r !50

1

p„ni~r !…e
ixni ~r !

5
1

2pE0
2p

dxe2 ixN)
r

)
i

@ueix1~12u!#

5
1

2pE0
2p

dxe2 ixN@ueix1~12u!#Vb

5SVbN D uN~12u!Vb2N51. ~C2!

The last equality yieldsu as an implicit function of the automaton parametersV,b and of the occupationN.
In a similar way, the average occupation per channel is

^ni~r !&5 (
$n~• !%

ni~r !P@$n~• !%#

5
1

2pE0
2p

dxe2 ixN@ueix1~12u!#Vb21ueix5
r

b
~C3!

and the two particle distributions, for (r ,i )Þ(r 8, j ), are

^ni~r !nj~r 8!&5 (
$n~• !%

ni~r !nj~r 8!P@$n~• !%#

5
1

2pE0
2p

dxe2 ixN@ueix1~12u!#Vb22u2e2ix

5
r

b

N21

Vb21
. ~C4!

By contrast, in an automaton that is maintained at equilibrium by contact with particle reservoirs, the total number of particles
is conserved only on average, and the equilibrium distribution is

P@$n~• !%#5)
r

)
i
p„ni~r !… ~C5!

with p„ni(r51)…5r/b, p„ni(r50)…512r/b, which guarantees normalization. The average occupation per channel is also
^ni(r )&5r/b, but correlations differ from the previous case@compare Figs. 5~a! and 5~b!#. For (r ,i )Þ(r 8, j ), the two particle
distribution factorizeŝni(r )nj (r 8)&5^ni(r )&^nj (r 8)&5(r/b)2, which implies that the correlations are strictly short ranged, in
a system in contact with particle reservoirs.
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