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In systems removed from equilibrium, intrinsic microscopic fluctuations become correlated over distances
comparable to the characteristic macroscopic length over which the external constraint is exerted. In order to
investigate this phenomenon, we construct a microscopic model with simple stochastic dynamics using lattice
gas automaton rules that satisfy local detailed balance. Because of the simplicity of the automaton dynamics,
analytical theory can be developed to describe the space and time evolution of the density fluctuations. The
exact equations for the pair correlations are solved explicitly in the hydrodynamic limit. In this limit, we
rigorously derive the results obtained phenomenologically by fluctuating hydrodynamics. In particular, the
spatial algebraic decay of the equal-time fluctuation correlations predicted by this theory is found to be in
excellent agreement with the results of our lattice gas automaton simulations for two different types of
boundary conditions. Long-range correlations of the type described here appear generically in dynamical
systems that exhibit large scale anisotropy and lack detailed balBib@63-651X96)07208-X]|

PACS numbegps): 05.20-y, 05.40:+j, 51.10+y

I. INTRODUCTION dom. These collision rules satisfy a local detailed balance
relation, and conserve momentum globally, in a statistical
In a hydrodynamic system under nonequilibrium condi-way, but not locally. At a global scale, detailed balance is
tions the fluctuations of the densities of conserved quantitieabsent because of the imposition of nonequilibrium con-
are correlated over large distances, as confirmed by recestraints. The automaton dynamics naturally lends itself to a
experiments performed by Law, and co-workgts-4]. The  hierarchical descriptiofl7—19. Microscopically, particles
presence of long-range correlations in systems removed fropropagate between adjacent nodes and experience collisions.
equilibrium had been predicted by kinetic the@s)}, by non-  From a “macroscopic” point of view, the evolution of the
equilibrium statistical mechani¢6], and by phenomenologi- automaton is given by a diffusion equation. An intermediate
cal theories, such as fluctuating hydrodynaniiék These “mesoscopic” description accounts for the statistical prop-
correlations decay algebraically over distances comparable terties of the fluctuations, which correspond to deviations
the size of the system. They appear generically in systemom the average behavior arising from the microdynamics.
subject to nonequilibrium constrairs,8—16 and are a con- In equilibrium, the fluctuation correlations are localized on a
sequence of the existence of conserved quantities, the abingle node. In the presence of a density gradient, which
sence of detailed balance, and the presence of spatial anisataintains the automaton away from equilibrium, we can dis-
ropy. The long-range nature of these correlations iginguish two contributions in the correlation function of the
remarkable in as much as it is manifested in fluids where th@article number fluctuations: A local equilibrium one, which
interactions are short ranged, and under conditions for whicks short rangedin our model, it is strictly localized on one
the fluid is far from critical points or hydrodynamic instabili- lattice node, and a long-range term, which decays algebra-
ties. The fact that equilibrium correlations remain shortically with a characteristic length on the order of the system
ranged away from critical points is a consequence of precissize. The simplicity of the dynamics of this automaton at the
cancellations of the effects of noise sourfék As soon as microscopic level makes it possible to develop an analytic
this balance, which is characteristic of the equilibrium statedescription not only for the evolution of the densities of con-
is lost the correlations may become long ranged, as thegerved quantities of the automatén this case, solely the
generically do. number of particles per noglébut also for their fluctuations.
Our objective in the present work is to put forth and ana-Thus, we derive exact equations for the evolution of pair
lyze a simple microscopic model, which nonetheless poseorrelations and solve them in the hydrodynamic limit. The
sesses sufficiently complex dynamics to exhibit this type olowest order approximation in a perturbative scheme using
long-range correlation. In particular we construct a latticethe inverse of the size of the system as an expansion param-
gas automatorilLGA) corresponding to a collection of ran- eter leads to the same expressions for pair correlations as the
dom walkers. The “particles” move on a regular array at phenomenological theory of fluctuating hydrodynamics. The
discrete time intervals and interact via an exclusion principleyalidity of this approximation is tested against the results of
a constraint that acts as a sort of hard-core potential in theimulations of the dynamics of the automaton. It is seen that
lattice. Particles also enter collisions whose outcome, whileven for very small automatdhat is, even rather far from
conserving the number of particles, is otherwise entirely ranthe thermodynamic limjt fluctuating hydrodynamics pro-
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vides a very accurate description of the statistical properties
of the fluctuations. Reservoir System Reservoir
The present model system is similar to a cellular automa- K K K

ton proposed by Kawasak20] and studied by Spohf21], T(x)
who also derived the existence of long-range correlations
from the automaton microscopic dynamics. From a mesos- T,
copic viewpoint, both the cellular automaton studied by
Spohn and the LGA investigated here represent two different

microscopic realizations of a stochastic equation analogous Ts : : X
to that studied by Nicolis and Malek Mansd@2] and Gar- 0 L

cia et al. [23] to describe heat transport in a rigid conductor

subject to a temperature gradient. In this case, the conserved FIG. 1. Quasi-NESS temperature profile.

guantity is the energy densifgs measured by the local tem-

perature, and the temperature fluctuations are described by gles. Simulations of the dynamics of the automaton demon-
Fourier (heat diffusion equation, to which a random heat strate the accuracy of the theoretical description. Section IV

current with a local equilibrium formis added. ~ ¢ontains a summary of results and some concluding com-
Long-range correlations of the kind described in this paments.

per are also present in LGA with collision rules that violate
Qetgiled balance. These automata attgjn a homogeneo_us equi- Il. FLUCTUATING HYDRODYNAMICS
librium state that is non-Gibbsian. Initially automata violat-
ing detailed balance were constructed to simulate hydrody- We consider the problem of heat transport in a one-
namics at high Reynolds numbdi24]. It was realized later dimensional rigid conductor. Our starting point is the iso-
on that these models are intrinsically interesting as a pardated system analyzed by Procaceizal. in Appendix B of
digm for driven systemgl9,25, and that they exhibit all the Ref.[26] (see Fig. 1. We proceed in successive steps: First,
wealth of behavior characteristic of systems removed fronthe heat diffusion equation for the system depicted in Fig. 1
equilibrium. In particular, they also exhibit algebraically de- is solved. Then, we discuss the conditions under which such
caying correlations, which have been studied in great detai system supports a quasistationary nonequilibrium steady
[12,19,25. state(quasi-NES$ with a linear temperature profile for the
Our work complements that carried out by these authorsentral portion. Finally, we solve the stochastic equation,
and provides a systematic comparison between the theoretivhich is constructed by adding a random heat flux with local
cal description and simulations. One of the main objectivesquilibrium form to the Fourier equation, in the limit in
of this paper is to derive the exact equations for the evolutionvhich the quasi-NESS is established.
of the hydrodynamic variables and their fluctuations and to Consider the Fourier equation in one dimension,
establish the connection with fluctuating hydrodynamics.
Once this program is realized, we can describe in detail the
mechanism by which the long-range correlations are built up
from the local microdynamics. We also discuss the validity
of the local-equilibrium hypothesis, a basic assumptigsu- ~ Wherex(x) = x[ 6(—x)+ 6(x—L) ]+ «26(x) 6(L —x) is the
ally justified a posteriorj in the theory of fluctuating hydro- Piecewise constant thermal diffusivity(x) is the Heaviside
dynamics. step function. The initial condition is
In Sec. Il, we review the problem of heat transport in a
rigid conductor using the phenomenological approach of TGO =T10(=x) +T200) 8(L—x)+ Ta0(x~L)., ()
fluctuating hydrodynamics. The novelty of the present treatyynere T,=(Ty+Ta)/2=T,+BL/2, and B=(T5—T,)/L is

ment is that the postulated Landau equation includes expliGhe magnitude of the temperature gradient, and a measure of
itly the heat reservoirs that maintain the temperature gradienisy far from equilibrium the system is.

across the conductor. In this scheme it is possible to discuss Rather than directly solving Eq(l), we consider the
the effect of boundary conditions in the stochastic equation,qivalent equation for the spatial derivative of the tempera-
rigorously. Given the long-range nature of the correlationsy, profile

boundary effects should be nontrivial. It is argued that the

; ()

aT t—a (9_'_ t
ot (X1)_5 K(X)& (X1)

implemented boundary conditions for the automaton de- d daT(x,t) &? IT(x,t)

scribed in Sec. lll(vanishing of long-range correlations at T ax - al KT 3
the boundaries of the systemorrespond to the paradigm of

a system in a quasistationary steady state maintained by cowith the corresponding initial condition

tact (diffusive or thermal with reservoirs. Section Il consti-

tutes the main body of the paper. We construct a two- dT(x,0)

dimensional lattice gas automaton whose collision rules IX :B§[5(X)+5(X_L)]' 4

satisfy a local detailed balance relation. Global detailed bal-

ance is broken by imposing nonequilibrium constraints. Thelhe formal solution of Eq(3) is given by

equations for the evolution of the average number of par- )

ticles per node and for the corresponding fluctuations are IT(X,1) —ex ‘9_ (Xt IT(x,0) )
derived from the microscopic propagation and collision ax ax2 " ax
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The following step is to find the eigenfunctiofg(x) of the
operator 6%/ 9x?) k(x):

2

d
72 KXOP(X)= —k*Py(x), (6)

which are given explicitly in Appendix A. Here, we just

guote the result foP,(x) in the limit e= 'k, /x;—0 for the
case of semi-infinite reservoirs:

ag kx
P (X)~ —cos—0(x)0(L—x)+O(e), 7
()08 7= 60x) 8(L=3)+ O(e) (7
and
2,\,2 ” _ VKo
a2 Ln;wé(k n— ) )
when e—0.

Using the spectral decomposition of the identity

S(x—xXg) = f dkie(xo) Pi(Xo) P(X), ©

we can give an explicit solution for E¢3) with the initial
conditions given by Eq(4)

aT(xt) L 92
= :IBEex WK(X)t [S(x—L)+ 8(x)]

” nax

X 0(X) O(L—X). (10

This solution is valid fort<(1/e?)L?/w?k, and e—0.
We note that for an intermediate time regime

L2 . 1 L2
<t ——,
v K2 ?77 K2

the derivative of the temperature profile is well approximate

by

J
5T(x,t)~/30(x)0(L—x), (11
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(9(x,1))=0,

Kg
(g(x,1)g(x",t"))= 2= k(X)(T(x,1))?
p
X o(x—x")o(t—t'), (13

wherekg is the Boltzmann constarff, the heat capacity per
unit volume, andT(x,t)) is the temperature profile, which
is a solution of the deterministic equation, Efj). This Lan-
dau equatiorfEq. (12)] is constructed phenomenologically
by requiring that at homogeneous equilibriumiT(x,t))
=Tyl the pair correlations are given correctly. The exten-
sion to a nonequilibrium situation makes use of the hypoth-
esis of local equilibrium. It is assumed that the thermody-
namic variables that characterize the system are well defined
locally. The nonequilibrium steady state is thus viewed as a
state where these thermodynamic variables vary slowly in
space(on a hydrodynamic scale, which is much larger than
the scale at which the underlying microdynamics take place
In general, the derivation of EL2), even in an approximate
way, is rather complicated. In the following section we ana-
lyze a diffusive lattice gas automaton for which we derive
from the actual microscopic dynamics a stochastic Landau
equation.

The equal time pair correlation function of the tempera-
ture fluctuations is defined as

C(x,x";t)=({S8T(x,t) §T(x' 1)), (14

with ST(x,t)=T(x,t) —(T(x,t)}. This correlation function
is the solution of the differential equation

(?C 't d (?+ d , J c .t
o (X,x";t)= ﬁ_XK(X)5 WK(X)W (X,x";1)

2kg 0 ) ,
+C_p5WK(X)<T(X’t)> S(x—x").

(15

This equation is obtained by solving formally E42), con-
structing the equal time correlation function, and usihg)

Ao evaluate one of the time integrals; differentiation of the

resulting expression with respect to time yields Ep).

There are two contributions to the correlations: a local-
equilibrium contribution(denoted LE, and the remainder
(denoted LR, which is long ranged:

C(x,x";t)=CE(x,x":t) + C-R(x,x":t). (16)

which corresponds to the long-lived quasi-NESS depicted in

Fig. 1, previously derived in Ref26].

The local-equilibrium contribution has the form

In order to understand what are the proper boundary con-

ditions in a nonequilibrium system when fluctuations are
considered we now proceed to solve the stochastic equation

J J J J
ET(X,t)Z 5 K(X)&T(X,t) + &g(x,t), (12

obtained by adding to the deterministic heat-diffusion equa-gt

tion [Eg. (1)] the gradient of a random heat flux(x,t),

which is assumed to be Gaussian white noise with the prop-

erties:

k
CE(X 1) = & (T(x,)28(x=X"), (17
P
and the long-ranged term obeys the differential equation

CR(x,x";t)

_CLR "t _(i i+i ’ i
x5t = IX K(x) X ox’ K(X )ﬁx’
+2_I<BK(X)((9<T(x,t)>

2
C, X )5(x—x’). (18
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Equation (18) corresponds to a diffusion equation in two to lowest order ine. The correlations are proportional to the
dimensions with a source term on the lirex’, which is  square of the temperature gradient and they decay linearly
proportional to the square of the spatial derivative of theover a distance comparable to the system size.
temperature profile. Assuming that the system is initially in a It is important to stress at this point that different bound-
local equilibrium statd C-R(x,x’)=0], the formal solution ary conditions from the ones described would give rise to
of Eq. (19) is long-range correlations of different form. However, if we
impose the gradient by contact with macroscopic reservoirs,

2k [ J the appropriate boundary conditions are that the fluctuations
CR(x,x";t)= — | drexp | — (X)) — our
X5 CoJo oX X have a local equilibrium form at the edges of the system.
=2 b= L) lll. DIFFUSIVE LATTICE GAS AUTOMATON
ax’ ax’

We construct a model system with stochastic micrody-
2 namics that, at the mesoscopic level, can be approximately
) (x—=x"). (190 described by the phenomenological theory presented in Sec.
Il. The model belongs to the class of lattice gas automata,

The explicit solution is obtained by finding the spectral de-Where particles move on a regular array at discrete time in-
composition of the operatoB(ax) «(x) dl dx terval;. S_m(_:e we are |n.terested. in thg transport of a scalar

quantity, it is sufficient in two dimensions to consider the
J 9 case of a square lattice to obtain a diffusion equation at the

2 KX = Qu(x) =~ k*Qk(X). (200 macroscopic level.
The system analyzed is composed of particles moving on

The details of the derivation are given in Appendix A. Here, @ two-dimensional - square latticel of d|mepS|ons
we just quote the result for semi-infinite reservoirs in the(bx+1)XLy [27]. There are four channels per lattice node.
limit e= WHO Each channel corresponds to the particle velocity pointing

towards one of the four nearest neighbpirs-0 (right), 1
(up), 2 (left), 3 (down)]. Channel at noder € £ is occupied

X((S’(T(X,T)}
X

Qu(x)~ &sinﬁ 6(x) 8(L—Xx), (21 if there is a particle at with velocity ¢, . At timet, the state
Veo Ky of the automaton is thus described by a set of bits,
with {ni(r,t);reL, i=0,1,23, (25

where n;(r,t) is equal to 1(0) if channeli of noder is
). (22 occupied(empty). There is an exclusion principle, which is
the equivalent in the lattice gas of a hard-core potential pre-
venting two particles from simultaneously occupying the
same channel of a given node.

The microscopic evolution of the automaton takes place
- . i Y _in two stages. There is a propagation step, in which each
the system is in the quasi-NESS described at the beginning, icje in the automaton moves to the same channel of a
of this section [ie, (T(x1)=T(x)=T16(=X)  pejghboring node according to its velociigee Fig. 23)].
+(T1+BX) 0(x) O(L—x) + T56(x—L)], the long-range con- ko instance, if there is a particle in the channel “up” of
tribution to the pair correlation function is noder, the propagation step will move it to the channel

2 K2 - ALY
b~ n:E_m 5<k n—
Hence, in the limite—0 the operator d/dx) «(x)d/dx has

the same spectral decomposition as the operasof/ x>
with Dirichlet boundary conditions ax=0, L. Assuming

) o ® 1 “up” of the node r+y, wherey is a unit vector in they
CR(x.x':t)= 2B - 1_e72n2(K2772/L2)t direction. _ .
( ) szg Cp nzl nZ( ) The second stage of the dynamics can be viewed as a
, “collision” step consisting of a random redistribution of the
< sim Tr—xsinnﬁ 23 particles at each nodeee Fig. 20)] such that configurations
L L’ compatible with the values of the conserved quantitias

our case, the particle number opbre equally probable out-
in the limit e=ky/k;—0 and for times comes of the collision step. This choice for the collision rules
t<(1/e®)L/27%k,. In the time regime during which the greatly simplifies the subsequent analytical derivation of the
quasi-NESS is establishefl /272 k,<t<(1/e?)L/27% k5] equations describing the macro- and mesoscopic evolution of
the long-range steady state correlations are of the form  the automaton. From this set of rules that govern the dynam-
ics of the automaton we can derive a hierarchy of contracted

©

LRS 2 kg 1 ax_ ax descriptions containing p.rogressively_smaller_amount_s of in-
CHRS{x,x") = mﬁ C. 21 2SN —simn = — formation about the details of the “microscopic” configura-
P tion of the automaton. The coarsest description is obtained
kg B2 ) ) by averaging the equation for the evolution of the channel
:C_T{(L_X )XO(x—=x") occupation number over the stochastic dynamics. For the
P class of automata investigated this procedure yields an exact

+(L=x)x"8(x" —x)}, (24 Boltzmann equation, which, in the hydrodynamic limit leads
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I takes the value 0 with probability (AN/4) or the value 1
T M (@) R with probability N/4, whereN is an integer between 0 and

; 4. The Boltzmann equation is obtained by averaging(Z6).
over the stochastic dynamics

3
fi(r,t+1)=%]20 fi(r—cyb, (27)

In state Out states (probability)

, (b) with the definitionf,(r,t)=(n;(r,t)). The angular brackets
Oparticles 4‘* @ denote the average over the stochastic dynamics. Summing
Eq. (27) over the index, we obtain the equation governing

1particle + + + -.|— sy the evolution of p(r,t)=(N(r,t))=32 ,fi(r,t), the local

density(or average node occupation number

2 particles + + + + + + ) Lo
(rt+1)==> p(r—c,t). (28
3 particles +_ + + ,*_ am P 455

4 paricles + . Note that this is amxactBoltzmann equation obtained with-
out appealing to thenolecular chaoshypothesis. The sto-
chastic dynamics contains intrinsically the factorization of

FIG. 2. (a) Propagation step in a portion of the automaton. Thethe occupation densities through the random redistribution of
motion takes place on a square lattice with spacikgs Ay=1. A  the channel occupatio28]. Equation(28) can be rewritten
dot on a link, close to node, indicates that there is a particle in the form
occupying that node with a unit velocity along the direction indi-
cated by the linkjb) collision step. Then state withm=0,...,4 1
on a node yields any of the corresponding states with the same p(r,t+1)—p(r,t)= 4_12 (e 9 V=1)p(r,t). (29
number of particles with probability &(;, , wherewv, is the mul- =0
tiplicity of the state(i.e., the number of compatible configuratipns

3

In the continuous time limit and expanding to second order
in the gradients(hydrodynamic limii Eq. (29) yields the

to a diffusion equation. Section Ill A contains a detailed dls-diffusion equation

cussion of this “macroscopic” level of description. A more

refined(mesoscopicdescription is obtained by incorporating P

the statistical properties of fluctuations. In Sec. Ill B, we in- —p(r,t)= DVrzp(I’,t), (30

vestigate the behavior of static two point correlations of the at

density fluctuations. Following the arguments presented in . e 1 _

Sec. II% nonequilibrium constrgints aregimplemelrawted by ranyvIth a diffusion constanD = . In the. derivation Of. Eq(30)

domly initializing the nodes at the automaton edges, which'® have made use of the symmetries of the lattice, namely,

are in contact with particle reservoirs. This procedure corre- 3 3

sponds to assuming a local equilibrium form for the fluctua- > =0, 2 cg=21, (31)

tions at the boundaries. In the bulk, the fluctuations are seen i=0 i=0

to exhibit correlations that decay only algebraically over dis-

tances comparable to the size of the system. These longvhere 1is the unit tensor.

range correlations are very sensitive to different implemen- For the sake of comparison of theoretical results with

tations of the nonequilibrium constraints. This point is simulation data, it is convenient to define reduced quantities,

illustrated in Sec. Il C, where the constraints are imposed bwvhich depend only on one of the spatial directiogsthe

direct manipulation of the microscopic configuration of thedirection along which the gradient is imposed, and on time.

automaton. Simulations show that the qualitative features ofhis is achieved by averaging over the remaining spatial

the long-range correlations are modified, even though thelirection Y. Along this direction periodic boundary condi-

macroscopic density profile is the same in both cases. tions are imposed by identifying nodesyat 0 andy=L, .
Hence, the reduced density per node is

A. Macroscopic dynamics: Diffusion equation

Lyfl
The starting point for the derivation of an equation for the p(x,t)=— 2>, p(r,t). (32
time evolution of the average occupation of a given node is Lyy=o
the equation that describes the microdynamics of the au- ) , , , .
tomaton In Fourier space, one can easily write the time evolution
ni(r+c,t+1)=R(N(r 1)), (26) p(k,t)=op(k,0exp{—DK?t},
where N(r,t)=32 n(r,t) is the occupation number of k:2_7-rn' n=012..., (33

noder at timet, and R(N) is a random function, which Lx
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FIG. 3. Simulation data for a 2562048 automaton with peri-
odic boundary conditions in thé andY directions.(a) Evolution of
the reduced density profile along tiedirection. Initially the au-
tomaton presents a square density profile with all nodes wit
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0.0 ; PRI,
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FIG. 4. Time evolution of the reduced density profile along the
X direction in a 25& 256 automaton under nonequilibrium condi-
tions. Initially the system has a square profile with all the nodes for
0=x<128 fully occupied and all other nodes E28< 255 empty.
Asymptotically the system evolves to a steady state characterized
by a linear density profile. Periodic boundary conditions are used
for the Y direction. ForX, the density at the boundaries is kept
constant at the value{x=0)=1 andd(x=255)=0.

where d&p(k,t) is the Fourier transform  of
op(X,t) =p(x,t) — ps(x), the deviation of the actual density
profile from the asymptotic stationary profile(x). This sta-
tionary profile is a solution of the differential equation
(0%19x?)ps(x) =0, and, depending on the boundary condi-
tions imposed along, it can be a homogeneous equilibrium
profile ps(X) = peq, Whenp(0)=p(L,)=peq, OF @ NONequi-
librium steady state, p(X)=ps(0)+BX; B=[p(Ly)
—p(0)]/Ly, whenp(0)# p(Ly).

The simulations of the automaton dynamics have been
carried out under both equilibrium and nonequilibrium con-
ditions. Figure 8a) shows the time evolution of the reduced
density profile in a (2582048) automaton with periodic
boundary conditions in both thé andY directions. Initially
the automaton exhibits a square density profile, in which all
channels of all nodes are occupied for26. This initial
nonequilibrium profile evolves to a homogeneous equilib-
rium state characterized by a density per channel
deq=0.0976. [Note: The density per channel is just one-
fourth of the density per nodet(x,t) =p(x,t)/4.]

The evolution of the different Fourier components of the

lensity profilep(k,t) is shown in Fig. 8). The amplitude of

x< 26 completely occupied. Asymptotically the automaton evolvesthe modek=0 is constant, reflecting th? global conservation
to an equilibrium state characterized by a constant density profiledf the number of particles. The remaining modes, wkth

(b) Time evolution of the different Fourier components of the re- # 0, have an average exponential decay that agrees with ex-
duced density profile. In this and subsequent figures time is given ifpression(33). From this exponential decay we can measure
automaton time step units, and space in units of lattice spacing. the diffusion constant, which has an experimental value of
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D =0.252+0.002[29], in excellent agreement with the value The summations are over possible configurations of a node,

D=1, predicted by the theory. The deviation arises from thewith the notation{s}={s;;i=0,1,2,3. The random function

terms neglected in approximating a finite difference equatiorgs, () is 1 or O depending on whether the collision pro-

[Eqg. (28)] with a differential equation in both space and time duces the configuratiofic} from the initial configuration

[Eq. (30)]. {s} or not. Upon averaging over the stochastic dynamics this
The results of simulation under nonequilibrium conditionsquantity becomesAq_.,;, a matrix that has a block-

in a somewhat smaller automaton (25B56) are shown in diagonal form, provided that the configuratiofs},{o} are

Fig. 4. The initial state of the automaton is a square profilegrouped into equivalence classes according to the value of

where the nodes on the left half of the lattice are fully occu-the conserved guantities. For the automaton considered here,

pied. The evolution quickly renders the profile smooth and

eventually leads to a linear density profile, which is the as-

ymptotic stationary state for the implemented boundary con- 1

ditions [d(x=0)=1, d(x=L,)=0]. It is clear from Figs. A{S}—*{U}_aé Ek Sk'zk Tk

3(a) and 4 that the fluctuations in the 28@56 automaton

are noticeably larger than in the 28@048 automaton, in

accordance with the idea that the relative size of f|UCtuati0n$\/hereV{s} is the number of elements in the equivalence class

decreases with increasing system size. to which the configuratio{s} belongs. Its value for the

present casésee Appendix Bis

(35

B. Mesoscopic dynamics: Fluctuations

We have derived an exact Boltzmann equation, 28), 4
which describes the dynamics of the single particle distribu-
tion of the automaton. In order to characterize the fluctua- Vig= S .
tions it is necessary to investigate the evolution of quantities g’o Sk
associated with several particles. In particular, for two par-
ticles, we can formulate the equation

(36)

ni(r+ t+1)n(r' +¢; t+1) Appendix B also contains a derivation of the result

=[1-8(r,r)] X X 00| €9 1o1€is) 107} 13
{shio} s} 40"} > UiA{s}—»{rr}:ZkE Sk (37)
{o} =0

X o({sh{n(r,t)})s({s'}.{n(r",t)})
+6(r,r") 2 0i0i&g 1010 S}{N(r,H)}). which is needed, together with the Boolean nature of the
{sh{o} variables ¢?=o;) to evaluate the average of E@4) over
(34)  the stochastic dynamics:

1 1
(ni(r+c,t+1)n;(r' +¢,t+1))=[1- 6(r,r’)]1—6%, (ni(r,tym(r’, 1))+ §(r,r’)L—15ijEk (ni(r,t))

1
+5(1- 5”); <nk(r,t)< 2 n,(r,t)—l) H

1 1
= E{N(r,t)N(r’,t)H 5(r,r’)4—8(1—45ij)[(Nz(r,t)>—4<N(r,t)>]. (38

Summing over the indicesj and making use of the equation fa¢r,t) =(N(r,t)) [Eq. (28)], we can derive the equation for
the correlation function of the density fluctuatioB$r,r’;t) =(N(r,t)N(r',t)) —(N(r,t))}{(N(r’,t)),

C(r,r’;t+1)—C(r,r’,t)=%Z (e % Vre SV —1)C(r,r';t)
ij
1
* 782 e % Vr e 9V (1-48)[(N*(r,t))—4p(r,H)]8(r,r"). (39

This exact equation can be approximated in the hydrodynamic (small gradientsand in the continuous time limit by
the following equation
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d 2 in order that Eq.(43) give the correct answer for the equi-
EC(r,r’;t)=D(V,+Vr,)C(r,r’;t) librium correlations.
Away from equilibrium, we make use of the hypothesis

D ) that the noise term, which reflects the effect of dynamics at
= Ve Voo | 5 KNS 1) =4p(r,H]18(r,r") | the microscopic scale, has a local equilibrium form
(40) D
FFH(r,t):ip(r,t)[‘l_P(r,t)]- (46)

At this point, it is interesting to compare expressi@0)
with the theory of fluctuating hydrodynamics. Following the \,. ; ;

prescription given by Landau and Lifshif30], we assume With this hypothesis Eq43) becomes

that SN(r,t)=N(r,t) —p(r,t) is a random variable obeying 9 ) 2

a stochastic equation, which is constructed by adding a noise EC(F.F’;U =D(Vi+ V. )C(r,r";t)+V,-V,
term to the macroscopic diffusion equation that governs the
evolution of p(r,t) =(N(r,t)): D

X5 p(r,OL4=p(r,0]8(r,r") | (47)

J
— 6N(r,t)=DV25N(r,t)+V-g(r,t). (41) . . . :
at We observe that this equation, which has been constructed in

) i a phenomenological fashion, can be obtained from(E&Q),
The termg(r,t) is a random particle flux assumed t0 be \yhich was derived directly from the microscopic dynamics,
Gaussian white noise with the properties if we assume that the on-site correlations have a local equi-
(g(r,1))=0, librium form:

(N2(r,0)=(N*(r,)) L= 2p*(r, ) +p(r,t). (48

(o(r.Dg(r' ")) =TFey(r.) 8(r,r')s(t—t"), (42
This is a good approximation in the thermodynamic limit,

where Feyy(r,t) is the amplitude of the noise. Given this gince the term neglected is of the order of one over the size
specification for the noise term, we can derive the equatiops the system.

for the pair correlation function for the density fluctuations, | order to study in detail the nature of these correlations

C(r,r";)=(SN(r,t) SN(r',1)), we focus on al(,+1)X L, automaton in a nonequilibrium
steady state characterized by an average stationary density
J ' 2, y?2 ' fil hich is li in theX directi
5@(” 1)=D(VZ+VZ)C(r,r';t) profile, which is linear in irection
ps(r)=ps(x=0)+ BX, (49)

+V Vo [Feu(r,t)o(r,r)]. (43
where 8= (1/L,)[ p(x=L,) = p(x=0)].

In the pair correlation function for the density fluctuations
we can distinguish two contributions: a local-equilibrium
term and a part containing the long-range correlations

Knowing that, at equilibriuni.e., for a constant density pro-
file p(r,t)=p], the correlation function for the density fluc-
tuations is exactlysee Eq.(3.26 of Ref.[31]]

CoNrr) = (4= p)alr 1), (44) C(rr’;)=CYr,r)+CR(rr;n), (50

) where
we conclude that the strength of the noise term must be

CYESr,r ) =2ps(N[4—ps(r)18(r,r"). (51)

D
eq —_ _
Fen 2 p(4=p) (45) Substituting expression(80) and(51) in Eg. (39), we obtain

1 1
CLR(r,r’;t+1)—CLR(r,r’;t)=EZ (e GV e*Ci'Vr’—l)CLR(r,r’;t)Jr4—8__ e o Vre 9 Vr(1-44))
i ij

X[CLR(r,r;t)ﬁ(r,r’)H%Z (e°i'(‘7'+‘7")—1){%ps(r)[4—ps(r)]}6(r,r’). (52)
Using Eqgs.(31) and(49) to simplify the last term, we have

1 1
LR Tt4 _ LR Ity — -G-V —Ci-V.r__ LR rt) 4 -GV —ci-V,r _ .
C=R(r,r";t+21)—C=(r,r';t) _16§ij' (e re” SV —=1)C N (r,r';t) 18 Eij e re 9V (1-446;)

X[CLR(r,r;t)é(r,r’)]—%ﬁzé(r,r’). (53
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120 ‘ ' ' ' sources of constant strength along the surfaee’. In order

to visualize the mechanism by which the long-range correla-
(a) tions are built up, consider the evolution of a system initially
at local equilibrium[CR(r,r’;t=0)=0], with a stationary

9.0 | - density profile given by Eq49). On average, channélof
noder has an occupatiofy(r) = 3p4(r), fori=0,1,2,3. After

the propagation step, the average occupation per channel at
noder is

fo(r)= 7 [ps(r)— BAX],

=5)

f1(r)=2ps(r),

C(x,x’

fo(r)=3[ps(r)+ BAX],

fa(r)=Zps(r),

0.0
( ! where Ax is the lattice spacing in th& direction, which

we have taken to be equal to 1 throughout the paper. The
pair correlations are local and equal t@n;(r)dn;(r))
_a0 . ) ) ) =5|Jf,(r)[1—f.(l’)], Wh|Ch yle|dS

X 6.0 8.0 10.0

4.0
Node(x) C(r,1)=1ps(r)[4—ps(r)]—£B% (54)

After the collision step the particles are redistributed at ran-
dom, which implies that, on average, the channel occupation
number isf;(r)=3p4(r), for i=0,1,2,3, as initially. Since
the number of particles at each node is conserved in the
collision step, the total correlatiof&q. (54)] do not change,
except that the nonequilibrium contribution is now com-
pletely off diagonal in the channels:

Cij(r,r)=(an;i(r)on;(r))

=8 fi(N[1—fi(N]—(1-35))5B% (59

C(x,X'=5)

In Cj;(r,r) the diagonal termsi¢&j) have a local equilib-
rium form and they remain local upon propagation. The off-
diagonal termsi(#j) give rise to the source term propor-
tional to — 3%/8 that appears in Eq53). Upon propagation,
these off-diagonal correlations become nonlocal and perform
a random walkdiffusion in the continuous limjtin the four-
dimensional lattice r,r'). This accounts for the first term
that appears on the right-hand sitths) of Eq. (53). The
only contribution unaccounted for is the second term in the
-3.0 ‘ ; : : rhs of Eq.(53), which corresponds to long-range correlations
0.0 2.0 4.0 6.0 8.0 10.0 " : .
Node(x) _created from pre-existing !ong—range correlations. Itis small
in the thermodynamic limit, and we shall neglect it hence-
FIG. 5. Equilibrium correlations of the density fluctuations, forth.
C®{x,x’=5), in an 12X 11 automaton(a) Periodic boundary con- Finally, after neglecting the on-site contributions from the
ditions in bothX andY directions; the average density ds=0.5. long-range term, and in the hydrodynamic and continuous
(b) Periodic boundary conditions in thé direction; for theX di- time limits, we approximate Eq53) by
rection, the average density of the boundary nodes is kept fixed at
the valued(x=0)=d(x=10)=0.5.

Jd
ECLR(r,r’;t)=D(Vr2+Vf,)CLR(r,r’;t)—%,Bzﬁ(r,r’).

If we neglect the second term on the right-hand side of Eq. (56)
(53), which is equivalent to assuming that the on-site corre-
lations have a local equilibrium fornfi.e., (N?(r,t)) In order to compare with the simulations, we define reduced

~(N?(r,t)).e], we find that this equation describes a ran-quantities by averaging over thé direction (orthogonal to
dom walk in a four-dimensional cubic latticer,(’) with  the direction of the gradient
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FIG. 6. Simulation data and theoretical results for anx11 automaton in a nonequilibrium steady state wittx=0)=1,
d(x=10)=0. (a) Correlations of the density fluctuation6NES{x,x’ =5). (b) Long-range contributiotC-RYx,x’ =5). (c) Long-range
contributionC-RSYx,x’ =3). (d) Long-range contributiolC-R*5Yy,y’' =5).

Ly*l Ly*l
Cxx';H)= > > C(r,r';t).
y=0 y'—o

We impose periodic boundary conditions in tiedirection
and Dirichlet boundary conditions in thédirection. As dis-
cussed in the previous section, the Dirichlet boundary condi€

(57)

tions (i.e., that the correlations at the edges of the system
have a local equilibrium form correspond to the system
being in contact with two reservoirs of different chemical
potential. This corresponds to the paradigm of the automaton
implemented in our simulations, where the configuration of
all the nodes ak=0, L, is reinitialized randomly at every
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time step, with the constraint that the average densities aif boundary conditiongfixed in theX direction, periodic in
x=0, L, be constantalthough, in general, different from theY direction. The theoretical curve is obtained by solving
each other The asymptotic solution of56) with these Eq. (56) by Fourier analysis.

boundary conditions i§22,23

C. Effect of boundary conditions

NES 1y — ~LES ’ LRS! ’
CNESXX) = RS0 X)) +CH 5% X), - (59) Unless we have access to its microscopic configuration,

the only way to impose a nonequilibrium density profile in a
with diffusive system is to establish contact with two particle res-
ervoirs of different chemical potential. Provided that the dif-
CLESSx,x') = %Lyps(x)[4—p5(x)]6(x,x’), (59 fusion coefficignt is _indgpendent of density, a system und_er
these constraints will display, on average, a linear density
profile. Furthermore, as discussed in Sec. Il, the density fluc-
tuations exhibit both local-equilibrium and long-range corre-
lations in the bulk, but only local-equilibrium correlations at

and

2 Ly the boundaries.
CHRS{x,x") =~ 7 L—{X’(LX—X) O(x—x") One of the advantages of investigating the type of prob-
X lem under consideration with an automaton is that we are
+x(Ly—=x")0(x" —x)}. (60 able to manipulate the configuration in each node at will. For

instance, the system can be forced by injecting and with-
drawing particles in such a way that it asymptotically dis-
eplays an arbitrary stationary density profile. Obviously, this
Omanipulation involves an important modification in the na-
ture of the fluctuations, which are extremely sensitive to how

Y directions. It can be seen that together with the Iocal—;hned Tﬁcr?jggp'? gggl|geléra|;£2ngf tir;]e tﬁgéomnaéggs'swﬁgfre%e
equilibrium term, there is a long-range contribution, which is € 0 e € €

constant and negative, as predicted by Bussemaker, Ern%terna&pertua?atlon IS r?ctlnf?.  diff bound
and Dufty[19]. This long-range contribution is well known di _In order to illustrate the & ectq ffterent boun ary con-
in classical statistical mechanitsee, for instance, E¢13.9 _|t|ons on the Iong—rarjge fluctuations, we ha<ve carried out
of Ref.[32]) and appears solely as a consequence of glob%mulatlons Ina d|ffu_5|ve LGA, where for 9x<Ly a sta-
conservation of particlegsee Appendix € lonary reduced density profile of the form

More physically relevant simulations are carried out in

Simulations have been carried out inX11 automata
with both equilibrium and nonequilibrium constraints. Figur
5(a) shows the density fluctuation correlations in a close
system with periodic boundary conditions in both thend

automata with periodic boundary conditions in thedirec- ps(X)=p16(a—X) +(p1— BX) O(x—a) 6(b—x)
tion and in contact with particle reservoirs at the edges per-
pendicular to theX direction. Figure &) shows the density +p3f(x—b) (61)

fluctuation correlations between the middle node and the _ . . o
other nodesC®y(x,x’ =5) in an equilibrium system with a 1S established by creating particlesxat a, and annihilating
homogeneous density profile. The average density per chaRarticles atx=b at appropriate constant ratesee Fig. 7.

nel in this automaton id=0.5. Note that the correlations are This procedure is very different from the previous imple-
local and exact|y equa(“p to Samp“ng erroDSto the value mentation, in which at every step all the nodes with

L,=11 [see Eq.(59)]. The average was performed over X=a,b are reinitialized at random, in such a way as to main-
1CP time steps. tain the respective average densities constant. As far as fluc-

Figure Ga) contains a plot of the correlations between tuations are cqncer_ned, this implied that the. correlations bg—
fluctuations at nodesx=5 and nodes with arbitrark, tween fluctuations in nodes at the boundaries and' those in
CNESgx,x’ =5), for a system that is maintained in a non- Pulk nodes are systematically destroyed at every time step.
equilibrium steady state by fixing the boundary densities af\S @ consequence, long-range correlations in such a system
the valuesd(x=0)=1 andd(x=10)=0. Figure Gb) is a  are confined in the regiom<x<b while the rest of the
plot of the long-range componei@-RSYx,x’ =5) of the System (Gsx=a, b=x=L,) exhibits only local-equilibrium

nonequilibrium correlations depicted in Fig(ah The full  fluctuations. . . _ o
line is simulation data, obtained by averaging ove? tibe For the implementation with the creation-annihilation pro-
steps. The dotted line corresponds to the approximatiof€dure, in the continuous-time and hydrodynamic limit, the
given by fluctuating hydrodynamics, Eq§8)—(60). A simi-  Landau equation governing the automaton evolution is
lar comparison is shown in Fig(® for C-RSYx,x’=3). P 2 5

Note that the equation fa€-R(r,r’;t) [Eq. (56)] contains SP(D=D Z2p(x, D)+ = gD+ Fex(x,1), (62

information about the magnitude of the gradieg) (but not

about its direction. This means that correlations are also long

ranged along the directigmerpendicularto the concentration where the diffusion constant B =3, the quantityg(x,t) is
gradient. This is illustrated in Fig.(8), where we have plot- the familiar random particle flux with local equilibrium form,
ted C(y,y'=5)==,,CRx,y,x’,5) for the same au- andFg.(x,t) is an external field representing the effect of
tomaton. The correlations are different from those depictednjecting and withdrawing particles at=a,b. The average
in Fig. 6(b) owing to the asymmetry introduced by the type of this external field is stationary and equal to
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FIG. 7. Averaged density profile in a 131 automaton, ob-

tained by creating particles a&=10, and annihilating them at
b= 20 at appropriate rates. The average densities at the boundaries
are kept ad;=d(x=0)=0.75 andd;=d(x=30)=0.25.

F_ext(x):<Fext(X:t)> 1.0 - |
52
:_Dﬁ—XzPS(X)-F,BD[&(x—a)_5(X_b)]_
1)
© 1 o ‘

The external field has a nonvanishing fluctuating part, which Nas
can be assumed to be Gaussian white noise provided that we
are only interested in calculating pair correlations. Since we
are manipulating the system only locally>at a,b, the fluc-

tuations of the external field will also be local, 0.0 Simulation
([Fod¥D=Fed Ol Fedx t)~FeX)) | 77 Theory
=Ds(t—t")[A8(x—a)d(x' —a)
T Apd(x=b) (X" =b)], (64) _0'50.0 16.0 26.0 30.0

. . . . Node(x)
where A, (A,) measures the intensity of particle creation

(annihilation. The system is in contact with reservoirs at
x=0 andx=L, of appropriate chemical potential so that the
average density is constant and equapioand p3, respec-
tively.

Again, the correlation function of the steady state den3|ty
fluctuations can be separated into two terms,

FIG. 8. (a) Steady-state correlation&§NE5(x,x’=15), in a
31X 31 automaton in the nonequilibrium state depicted in Figby .
Long-range contributionC-RSY(x,x’ =15).

nd a long-range contribution, which can be expressed as a
double Fourier series

CNES%X’XI):CLESS(X,XI)_I_CLRSS(X’X/)' (65)

A ne  mmw
CRSYx,x") =E 2 nmsm—xsmL—x (67)

with a local equilibrium contribution,

CHES %X ) = 2Lyps(X)[4—ps(x)]8(x,X"),  (66)  with
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1 2\2 oLy [P nm . mmw tions is the result of a balance between noise sources, which
Cnm:m ;) -B 2. dzsmL—zsmL—z is lost as soon as the system is removed from equilibrium. It
X X is thus seen that in a nonequilibrium steady state the density
‘nm mm nmmw fluctuations are correlated not only locally in an equilibrium-
+casmL—aS|nL—a+ Cp smL—bsmL—b , like manner, but also over large distances. This implies that
X X X X the nonequilibrium distribution function is not factorized, in
where contrast to the equilibrium case. Both the local-equilibrium
and the long-range contributions to correlations have been
Ca=A,—3B(4—2p,), measured in computer simulations. The results of simula-
tions have been compared to theoretical expressions derived
Co=A,+7B(4—2p3). from the stochastic microdynamics of the automaton. As a

first approximation to these exact expressions, one can derive
Simulations have been carried in a>331 automaton expressions obtained by means of the phenomenological
with the parametera=10, b=20,d;=0.75, andd;=0.25.  theory of fluctuating hydrodynamics, which are in excellent
For these values;,=c,=c, for symmetry reasons. Figure 7 agreement with the results of simulations even in fairly small
shows the density profile averaged over* iime steps, automata.
which is indeed of the form given by E(61). For the automata analyzed in this paper where the micro-
In Fig. 8@, the density fluctuation correlations scopic evolution preserves the particle number and where a
CNESYx,x") are plotted forx’ =15. The continuous line in  preferred spatial direction is established by the imposition of
Fig. 8(b) connects the simulation data for the long-range cor density gradient, global detailed balance is absent as a con-
relations at steady state between an arbitrary point and thgsqence the imposition of nonequilibrium constraints at the
mlddI<7a nodeC Tx,x'=18), obtained after averaging over o ndaries of the system. Long-range correlations of the
5x10° time steps. The dashed line represents the approxXiyhe gescribed here appear generically in dynamical systems

mate solution, given by expressi#f7) (the Fourier series i conserved quantities, having large-scale spatial anisot-
has been truncated after,m=1000), for a valuec=9.1, ropy and lacking detailed balance
e

which has been chosen so as to obtain the best fit to th
simulation data. The agreement between simulations and the

approximation given by fluctuating hydrodynamics is very

good. There are several features that call for comments. First,

the correlations extend beyond the central part of the system ACKNOWLEDGMENTS

a<x<b, where there is a concentration gradient; they have It is a pleasure to acknowledge Irwin Oppenheim for
a nonzero value for all @x< Ly. Second, the form of the fruitful discussions. This work was Supported by the EC un-
correlations is qualitatively different from those obtained in ader Contract No. ERBCHBG-CT93-0404. J.P.B. acknowl-
system with a linear density profile far<x<b, maintained edges support by the Fonds National de la Recherche Scien-
by contact with particle reservoirs at the extremes. In partifique (FNRS, Belgium. P.G. is grateful to the Japan
ticular they arepositive nonmonotonic as a function of dis- Society for the Promotion of Science for their support.

tance and furthermore they are nonlinear. Nonetheless, the

fluctuations in the “bulk” (i.e., around the central nogare

gualitatively similar in both situationfcompare Figs. @)

and &a) and Figs. &) and &b)]. APPENDIX A

The object of this appendix is to obtain the spectral de-
composition of the operators d{/9x?)k(x), and
(9l 9x) k(x)dl dx, where the thermal diffusivity isk(x)

We have constructed a lattice gas automaton with a set of «10(—X) + k260(X) (L —x) + k1 6(x—L), with the condi-
fully stochastic collision rules, giving rise to diffusive behav- tion that the eigenfunctions are a superposition of plane
ior in the hydrodynamic and continuous time limit. This waves in the limit|x|—o. This corresponds to the setup
model system exhibits spontaneous fluctuations similar talepicted in Fig. 1 with semi-infinite reservoirs.
those found in actual fluidsl8]. The statistical properties of Consider the eigenvalue equation
these fluctuations are the main objective of the present study.

In the simulations the automaton is kept at equilibrium or

away from equilibrium by placing it in contact with particle p

reservoirs of equal or different chemical potentials, respec- —5 k(X)P(X) = — kZP(X). (A1)
tively. From a computational point of view, these conditions X

are implemented by randomly initializing the nodes at the

boundaries of the system at every time step. Under equilib-

rium constraints, the correlations of the density fluctuationdVe require thatk(x) P, (x) and its first derivative be con-
are localized on each node, a result that is consistent with thiguous atx=0, L and that theP,(x) form an orthonormal
observation that in fluids away from critical points or hydro-set [in the Dirac sense, that is, we require that
dynamic instabilities, pair correlations decay on a micro-f”_.dxx(x) P (X)Py,(X)=8(k—k’)]. The eigenfunctions
scopic length scale. The local nature of equilibrium correla-can be written as

IV. SUMMARY
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kx kx Ci= 8,
k(x)— akcos—+bk\/—sm— 0(—x) (A3)
\/K—l \/K—l by=d.
+— ! ckcosk—x+dk\/_smk— 0(x) O(L—X) The continuity conditions at=L yield the result
K2 Via iz
kL kL
1 k(x—L) k(x— cos— Viepsin—
+ —| €,c0s—— + f K SiI———| 6(x—L). e Vicy Vo | [k
K1 Viey Viey = (A9
A2) fi 1 . kL kL dk
—sin——  cos—
Vi Vi
First, we implement the continuity conditions a0, and
obtain the equalities Finally, the orthonormalization condition is
|
f dXK k(X)Pk/(X)— {(ak+ Klb +eE+ Klfﬁ)é(k_k,)
Jx—l
+(aka,k_ Klbkb,k‘f'eke,k_ Klfkf,k)a(k‘f' k/)}
= 5(k—K"). (AS)
|
Combining Eqs(A3)—(A5), we obtain a, kx
Pr(X)=—cos—6(x) O(L—Xx), (Al11)
b= ax, (AB) K2k,
with with
- K Ky
, 1 14 CoZ(KLI i) + (K1l 15)SinP(KLI \icp) ai~k; > 5(T—nw> ,_2 Z 6(k n )
A | —— . n=-—o n=-—o
M Ky 1+Cosz(kL/\/K—2)+(K2/K1)Sir12(kL/\/K_2)( ) (A12)
A7

For the second operator, the eigenvalue equation is

We are mainly interested in the limit= ' x,/x;—0; then 5 5
— k(X) —Qu(x) = —k2Qy(x), A13
L1 s N K00 = Q)= —k?Qu(x) (A13)
K1 K2 1+ co(kL/Viy)' (A9) with the conditions thaQ,(x) and x(x)d/dxQ,(x) are con-

tinuous atx=0, L. We further require that the set of eigen-
whene— 0. Note that ifkL/ 'k, #n for anyne Zthen all  functions be orthonormal in the Dirac sense
coefficientsay, . . ., f, are at most of ordee. On the other [, dxQ(x)Qy/(x)=8(k—k’). The solution of Eq(A13)
hand, ifkL/\k,=nm+ 7, with <1 for somene Z, then  can be written as
all coefficients are at most of orderexcepta, , which has a
singular behavior,

2
Ak~

Qu(x)= akcos— + sm—l 0(—Xx)
= ) Ve N N
S 2 7 (A9)
T (2€°+7°)— (1N2) n(2€°+ 7) kx L)
+| c,cos—+ sm— X) 6 X
For e—~0 Eq. (A9) is an asymmetric representation oféa \/— \/— \/—
function. That is, . K(x— L) fo K(x—L) sl
€,C0S Sin x—L).
a2~ Jicz8(m), (A10) o e e

(A14)
whene—0.
Thus, to lowest order i, the eigenfunctions of the op- Using the continuity and orthonormalization conditions, we
erator %/ 9x?) k(x) are have
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Cy= 3 b, . kx
Qi(X)~ —sin—=6(x) (L —x), (A16)
by=dy, K2 K,
kL 1 with
COS— sm—
e Vo ke Ve ) & .
fi) S kL dk' bﬁm_n_Z 5(k—n - ) (A17)
—VK,Si—=  cos— =
Vica Vica
when e—0.
ak=a‘k‘bk,
APPENDIX B

o 1 1+ coR(KL/\ko+ (k11 k) SIP(KLI ko)

A~ s Here we compute the values ofy and of
1 1+coS(KL/Vky) + (kp/ k1) SINP(KLI Ky P (s}
( 2)+ (2 y) )(A15) 21510i{A)(s— o) for the automaton described in Sec. lIl.

We first evaluate the number of elements in the equiva-
In the limit e=\k,/x;—0 we have lence class of configurations with,s, particles:

1 2m . 8 1 2m 3 .
v{5}=% 5(2k sk,; o= =—| dxex |k20 (Sc— o)X =Ef0 dx>, [ expli(sq—o)x}

{o} k=0
3
1 2w
=——| dx
o el
4

SR ER A FEN A

Thus, the number of configurations with a given number of particles is

(1+e ™)*

. . 1 2w
glskX E e“’kx} = dxexp{iE SiX
mJo k

o=0

4
e > s’
K

i.e., the number of different ways of placiys, particles in the four different channels. We now evaluate the numerator of
the second expression, which is the number of configurations with chammceupied

(B1)

S 0o B 53 o5 [axend 13 s ave 7] S, et

{o} k#i oj=
3

1 —iXy34—iX — ) B2
(1+e )% Zk -1 (B2

1 (2=
dxexp[ i > S

~27)o 3

This result could have been obtained straightforwardly bywhich just states the fact that after a collision, the average

arguing that the quantity calculated is equal to the number obccupation of a channel is proportional to the number of
different ways of placing the remaining,s,— 1 particles in  particles participating in the collision.

the three available channels, given that chamnslalready

occupied by one patrticle.

Combining(B1) and(B2), we have APPENDIX C

In a closed system at equilibrium long-range correlations

appear rather trivially as a consequence of global conserva-

2(6}0i 6(ZkSk, Zk0%) _ ZSk tion laws. For the automata under consideration, it has been

{,2,} atE S 0SSk Zko) 4 B3 Verified [see Fig. B)] that equilibrium correlations of the
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density fluctuations exhibit a long-range contribution, whichton configuration. The equilibrium probability of having the
is constant, and whose integrated value is equal in magnitudeonfiguration{n(-)} is
and opposite in sign to the local equilibrium term, so that the
total number of particles is conserved.

Consider an automaton whose latti€eontainsV nodes. Pi{n(HN=IT I1 p(ni(r))é( > > ni(r)—N>,
There areb equivalent channels per node. The particle den- ro ro
sity (number of particles per noflés p. We consider peri- (CD
odic boundary conditions, so that the system is claged,
the total number of particleBl=pV is conservef Let {n with p(ni(r)=1)= 0, p(n;(r)=0)=1- 6. The parametep
()}={ni(r);reL,i=0,1,...,0—1)} denote the automa- is determined by normalization:

1 (2w
> PlnCy= > I I p(m(r))z—f dxexp‘ix(E > m(r))—N}
{n()} ()} mJo T

r I

1

1 (2w . )
oo [Taxe IS pureno
27)o ri ni(n=0

1 (am .
=ﬂf dxe ™M | H [6e™+(1-6)]

0 r

1fem
:EL dxe N[ e+ (1-6)]""

Vb N Vb—N
=( N)e (1—)VP-N=1, (C2)

The last equality yield® as an implicit function of the automaton parametérb and of the occupatiof.
In a similar way, the average occupation per channel is

<ni<r>>={n(2)} ni(r)P{n(-)}]

1 (2

T e iXNT paiX o (1 gy Vb1 gaix P
27 dxe "N e+ (1-0)] oe b (C3

and the two particle distributions, for,()#(r’,j), are

<ni<r)nj<r'>>:{2} ni(r)n;(r")P{N(-)}]

n(-)

1 2T X X .
— _Wf dxe—lxN[ 0eIX+(1_ 6’)]Vb_20262|x
0

LA
=5 : (C4

By contrast, in an automaton that is maintained at equilibrium by contact with particle reservoirs, the total number of particles
is conserved only on average, and the equilibrium distribution is

P[{n(-)}]=H H p(ni(r)) (C5)

with p(n;(r=1))=p/b, p(n;(r=0))=1—p/b, which guarantees normalization. The average occupation per channel is also
{ni(r))=p/b, but correlations differ from the previous cdsmmpare Figs. @ and gb)]. For (r,i)#(r',]), the two particle
distribution factorizegn;(r)n;(r’))=(n;(r)){n;(r'))= (p/b)?, which implies that the correlations are strictly short ranged, in

a system in contact with particle reservoirs.
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